

148

UNIT-5

Transaction properties(ACID properties)

In computer science, ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that

guarantee that database transactions are processed reliably. In the context ofdatabases, a single

logical operation on the data is called a transaction. For example, a transfer of funds from one bank

account to another, even involving multiple changes such as debiting one account and crediting

another, is a single transaction.

Jim Gray defined these properties of a reliable transaction system in the late 1970s and developed

technologies to achieve them automatically.

In 1983, Andreas Reuter and Theo Härder coined the acronym ACID to describe them.

The characteristics of these four properties as defined by Reuter and Härder:

Atomicity

Atomicity requires that each transaction be "all or nothing": if one part of the transaction fails, the

entire transaction fails, and the database state is left unchanged. An atomic system must guarantee

atomicity in each and every situation, including power failures, errors, and crashes. To the outside

world, a committed transaction appears (by its effects on the database) to be indivisible ("atomic"),

and an aborted transaction does not happen.

Consistency

The consistency property ensures that any transaction will bring the database from one valid state to

another. Any data written to the database must be valid according to all defined rules,

including constraints, cascades, triggers, and any combination thereof. This does not guarantee

correctness of the transaction in all ways the application programmer might have wanted (that is the

responsibility of application-level code) but merely that any programming errors cannot result in the

violation of any defined rules.

Isolation

The isolation property ensures that the concurrent execution of transactions results in a system state

that would be obtained if transactions were executed serially, i.e., one after the other. Providing

isolation is the main goal of concurrency control. Depending on concurrency control method (i.e. if it

uses strict - as opposed to relaxed - serializability), the effects of an incomplete transaction might not

even be visible to another transaction.

Durability

Durability means that once a transaction has been committed, it will remain so, even in the event of

power loss, crashes, or errors. In a relational database, for instance, once a group of SQL

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Atomicity_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Consistency_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Isolation_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Durability_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Jim_Gray_\\\(computer_scientist\\\)
https://en.wikipedia.org/wiki/Atomicity_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Consistency_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Isolation_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Serializability#Relaxing_serializability
https://en.wikipedia.org/wiki/Durability_\\\(computer_science\\\)
https://en.wikipedia.org/wiki/Crash_\\\(computing\\\)

149

statements execute, the results need to be stored permanently (even if the database crashes

immediately thereafter). To defend against power loss, transactions (or their effects) must be

recorded in a non-volatile memory.

Concurrency control
In information technology and computer science, especially in the fields of computer

programming, operating systems, multiprocessors, and databases, concurrency

controlensures that correct results for concurrent operations are generated, while getting

those results as quickly as possible.

Computer systems, both software and hardware, consist of modules, or components. Each

component is designed to operate correctly, i.e., to obey or to meet certain consistency rules. When

components that operate concurrently interact by messaging or by sharing accessed data

(in memory or storage), a certain component's consistency may be violated by another component.

The general area of concurrency control provides rules, methods, design methodologies,

and theories to maintain the consistency of components operating concurrently while interacting, and

thus the consistency and correctness of the whole system. Introducing concurrency control into a

system means applying operation constraints which typically result in some performance reduction.

Operation consistency and correctness should be achieved with as good as possible efficiency,

without reducing performance below reasonable levels. Concurrency control can require significant

additional complexity and overhead in a concurrent algorithmcompared to the simpler sequential

algorithm.

Why is concurrency control needed?[edit]

If transactions are executed serially, i.e., sequentially with no overlap in time, no transaction

concurrency exists. However, if concurrent transactions with interleaving operations are allowed in

an uncontrolled manner, some unexpected, undesirable result may occur, such as:

1. The lost update problem: A second transaction writes a second value of a data-item (datum)

on top of a first value written by a first concurrent transaction, and the first value is lost to

other transactions running concurrently which need, by their precedence, to read the first

value. The transactions that have read the wrong value end with incorrect results.

2. The dirty read problem: Transactions read a value written by a transaction that has been

later aborted. This value disappears from the database upon abort, and should not have

been read by any transaction ("dirty read"). The reading transactions end with incorrect

results.

https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Scientific_theory
https://en.wikipedia.org/wiki/Concurrent_algorithm
https://en.wikipedia.org/wiki/Sequential_algorithm
https://en.wikipedia.org/wiki/Sequential_algorithm
https://en.wikipedia.org/w/index.php?title=Concurrency_control&action=edit§ion=3

150

3. The incorrect summary problem: While one transaction takes a summary over the values of

all the instances of a repeated data-item, a second transaction updates some instances of

that data-item. The resulting summary does not reflect a correct result for any (usually

needed for correctness) precedence order between the two transactions (if one is executed

before the other), but rather some random result, depending on the timing of the updates,

and whether certain update results have been included in the summary or not.

Most high-performance transactional systems need to run transactions concurrently to meet their

performance requirements. Thus, without concurrency control such systems can neither provide

correct results nor maintain their databases consistent.

Concurrency control mechanisms[edit]

Categories[edit]

The main categories of concurrency control mechanisms are:

 Optimistic - Delay the checking of whether a transaction meets the isolation and other integrity

rules (e.g., serializability and recoverability) until its end, without blocking any of its (read, write)

operations ("...and be optimistic about the rules being met..."), and then abort a transaction to

prevent the violation, if the desired rules are to be violated upon its commit. An aborted

transaction is immediately restarted and re-executed, which incurs an obvious overhead (versus

executing it to the end only once). If not too many transactions are aborted, then being optimistic

is usually a good strategy.

 Pessimistic - Block an operation of a transaction, if it may cause violation of the rules, until the

possibility of violation disappears. Blocking operations is typically involved with performance

reduction.

 Semi-optimistic - Block operations in some situations, if they may cause violation of some

rules, and do not block in other situations while delaying rules checking (if needed) to

transaction's end, as done with optimistic.

Different categories provide different performance, i.e., different average transaction completion

rates (throughput), depending on transaction types mix, computing level of parallelism, and other

factors. If selection and knowledge about trade-offs are available, then category and method should

be chosen to provide the highest performance.

The mutual blocking between two transactions (where each one blocks the other) or more results in

a deadlock, where the transactions involved are stalled and cannot reach completion. Most non-

optimistic mechanisms (with blocking) are prone to deadlocks which are resolved by an intentional

abort of a stalled transaction (which releases the other transactions in that deadlock), and its

immediate restart and re-execution. The likelihood of a deadlock is typically low.

https://en.wikipedia.org/w/index.php?title=Concurrency_control&action=edit§ion=4
https://en.wikipedia.org/w/index.php?title=Concurrency_control&action=edit§ion=5
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Serializability#Correctness_-_recoverability
https://en.wikipedia.org/wiki/Deadlock

151

Blocking, deadlocks, and aborts all result in performance reduction, and hence the trade-offs

between the categories.

Methods[edit]

Many methods for concurrency control exist. Most of them can be implemented within either main

category above. The major methods,[1] which have each many variants, and in some cases may

overlap or be combined, are:

1. Locking (e.g., Two-phase locking - 2PL) - Controlling access to data by locks assigned to

the data. Access of a transaction to a data item (database object) locked by another

transaction may be blocked (depending on lock type and access operation type) until lock

release.

2. Serialization graph checking (also called Serializability, or Conflict, or Precedence graph

checking) - Checking for cycles in the schedule's graph and breaking them by aborts.

3. Timestamp ordering (TO) - Assigning timestamps to transactions, and controlling or

checking access to data by timestamp order.

4. Commitment ordering (or Commit ordering; CO) - Controlling or checking transactions'

chronological order of commit events to be compatible with their respectiveprecedence

order.

Other major concurrency control types that are utilized in conjunction with the methods above

include:

 Multiversion concurrency control (MVCC) - Increasing concurrency and performance by

generating a new version of a database object each time the object is written, and allowing

transactions' read operations of several last relevant versions (of each object) depending on

scheduling method.

 Index concurrency control - Synchronizing access operations to indexes, rather than to user

data. Specialized methods provide substantial performance gains.

 Private workspace model (Deferred update) - Each transaction maintains a private workspace

for its accessed data, and its changed data become visible outside the transaction only upon its

commit (e.g., Weikum and Vossen 2001). This model provides a different concurrency control

behavior with benefits in many cases.

The most common mechanism type in database systems since their early days in the 1970s has

been Strong strict Two-phase locking (SS2PL; also called Rigorous scheduling orRigorous 2PL)

which is a special case (variant) of both Two-phase locking (2PL) and Commitment ordering (CO). It

is pessimistic. In spite of its long name (for historical reasons) the idea of the SS2PL mechanism is

simple: "Release all locks applied by a transaction only after the transaction has ended." SS2PL (or

https://en.wikipedia.org/w/index.php?title=Concurrency_control&action=edit§ion=6
https://en.wikipedia.org/wiki/Concurrency_control#cite_note-Bern2009-1
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Lock_\\\(computer_science\\\)
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Cycle_\\\(graph_theory\\\)
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Index_locking
https://en.wikipedia.org/wiki/Index_\\\(database\\\)
https://en.wikipedia.org/wiki/Concurrency_control#Weikum01
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Commitment_ordering

152

Rigorousness) is also the name of the set of all schedules that can be generated by this mechanism,

i.e., these are SS2PL (or Rigorous) schedules, have the SS2PL (or Rigorousness) property.

Major goals of concurrency control mechanisms[edit]

Concurrency control mechanisms firstly need to operate correctly, i.e., to maintain each transaction's

integrity rules (as related to concurrency; application-specific integrity rule are out of the scope here)

while transactions are running concurrently, and thus the integrity of the entire transactional system.

Correctness needs to be achieved with as good performance as possible. In addition, increasingly a

need exists to operate effectively while transactions are distributed over processes, computers,

and computer networks. Other subjects that may affect concurrency control

are recovery and replication.

Correctness

For correctness, a common major goal of most concurrency control mechanisms is

generating schedules with the Serializability property. Without serializability undesirable phenomena

may occur, e.g., money may disappear from accounts, or be generated from

nowhere. Serializability of a schedule means equivalence (in the resulting database values) to

some serial schedule with the same transactions (i.e., in which transactions are sequential with no

overlap in time, and thus completely isolated from each other: No concurrent access by any two

transactions to the same data is possible). Serializability is considered the highest level

of isolation among database transactions, and the major correctness criterion for concurrent

transactions. In some cases compromised, relaxed forms of serializability are allowed for better

performance (e.g., the popular Snapshot isolation mechanism) or to meet availability requirements in

highly distributed systems (see Eventual consistency), but only if application's correctness is not

violated by the relaxation (e.g., no relaxation is allowed for money transactions, since by relaxation

money can disappear, or appear from nowhere).

Almost all implemented concurrency control mechanisms achieve serializability by providing Conflict

serializablity, a broad special case of serializability (i.e., it covers, enables most serializable

schedules, and does not impose significant additional delay-causing constraints) which can be

implemented efficiently.

Recoverability

Comment: While in the general area of systems the term "recoverability" may refer to the ability

of a system to recover from failure or from an incorrect/forbidden state, within concurrency

control of database systems this term has received a specific meaning.

Concurrency control typically also ensures the Recoverability property of schedules for

maintaining correctness in cases of aborted transactions (which can always happen for many

reasons). Recoverability (from abort) means that no committed transaction in a schedule has

https://en.wikipedia.org/w/index.php?title=Concurrency_control&action=edit§ion=7
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Process_\\\(computing\\\)
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Data_recovery
https://en.wikipedia.org/wiki/Replication_\\\(computer_science\\\)
https://en.wikipedia.org/wiki/Schedule_\\\(computer_science\\\)
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Isolation_\\\(database_systems\\\)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Serializability#Relaxing_serializability
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Money
https://en.wikipedia.org/wiki/Serializability#View_and_conflict_serializability
https://en.wikipedia.org/wiki/Serializability#View_and_conflict_serializability
https://en.wikipedia.org/wiki/Serializability#Correctness_-_recoverability

153

read data written by an aborted transaction. Such data disappear from the database (upon the

abort) and are parts of an incorrect database state. Reading such data violates the consistency

rule of ACID. Unlike Serializability, Recoverability cannot be compromised, relaxed at any case,

since any relaxation results in quick database integrity violation upon aborts. The major methods

listed above provide serializability mechanisms. None of them in its general form automatically

provides recoverability, and special considerations and mechanism enhancements are needed

to support recoverability. A commonly utilized special case of recoverability is Strictness, which

allows efficient database recovery from failure (but excludes optimistic implementations;

e.g.,Strict CO (SCO) cannot have an optimistic implementation, but has semi-optimistic ones).

Comment: Note that the Recoverability property is needed even if no database failure occurs

and no database recovery from failure is needed. It is rather needed to correctly automatically

handle transaction aborts, which may be unrelated to database failure and recovery from it.

Distribution

With the fast technological development of computing the difference between local and

distributed computing over low latency networks or buses is blurring. Thus the quite effective

utilization of local techniques in such distributed environments is common, e.g., in computer

clusters and multi-core processors. However the local techniques have their limitations and use

multi-processes (or threads) supported by multi-processors (or multi-cores) to scale. This often

turns transactions into distributed ones, if they themselves need to span multi-processes. In

these cases most local concurrency control techniques do not scale well.

As database systems have become distributed, or started to cooperate in distributed

environments (e.g., Federated databases in the early 1990s, and nowadays Grid

computing,Cloud computing, and networks with smartphones), some transactions have

become distributed. A distributed transaction means that the transaction spans processes,

and may span computers and geographical sites. This generates a need in

effective distributed concurrency control mechanisms. Achieving the Serializability property

of a distributed system's schedule (see Distributed serializability and Global

serializability (Modular serializability)) effectively poses special challenges typically not met

by most of the regular serializability mechanisms, originally designed to operate locally. This

is especially due to a need in costly distribution of concurrency control information amid

communication and computer latency. The only known general effective technique for

distribution is Commitment ordering, which was disclosed publicly in 1991 (after

being patented). Commitment ordering (Commit ordering, CO; Raz 1992) means that

transactions' chronological order of commit events is kept compatible with their

respective precedence order. CO does not require the distribution of concurrency control

information and provides a general effective solution (reliable, high-performance,

and scalable) for both distributed and global serializability, also in a heterogeneous

https://en.wikipedia.org/wiki/Schedule_\\\(computer_science\\\)#Strict
https://en.wikipedia.org/wiki/Commitment_ordering#Strict_CO_.28SCO.29
https://en.wikipedia.org/w/index.php?title=The_History_of_Commitment_Ordering&action=edit&redlink=1
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Bus_\\\(computing\\\)
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Federated_database
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Process_\\\(computing\\\)
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Distributed_concurrency_control
https://en.wikipedia.org/wiki/Serializability#Distributed_serializability
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Latency_\\\(engineering\\\)
https://en.wikipedia.org/wiki/Patent
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Concurrency_control#Raz92
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Scalability

154

environment with database systems (or other transactional objects) with different (any)

concurrency control mechanisms.[1] CO is indifferent to which mechanism is utilized, since it

does not interfere with any transaction operation scheduling (which most mechanisms

control), and only determines the order of commit events. Thus, CO enables the efficient

distribution of all other mechanisms, and also the distribution of a mix of different (any) local

mechanisms, for achieving distributed and global serializability. The existence of such a

solution has been considered "unlikely" until 1991, and by many experts also later, due to

misunderstanding of the CO solution(see Quotations in Global serializability). An important

side-benefit of CO is automatic distributed deadlock resolution. Contrary to CO, virtually all

other techniques (when not combined with CO) are prone to distributed deadlocks (also

called global deadlocks) which need special handling. CO is also the name of the resulting

schedule property: A schedule has the CO property if the chronological order of its

transactions' commit events is compatible with the respective transactions' precedence

(partial) order.

SS2PL mentioned above is a variant (special case) of CO and thus also effective to achieve

distributed and global serializability. It also provides automatic distributed deadlock

resolution (a fact overlooked in the research literature even after CO's publication), as well

as Strictness and thus Recoverability. Possessing these desired properties together with

known efficient locking based implementations explains SS2PL's popularity. SS2PL has

been utilized to efficiently achieve Distributed and Global serializability since the 1980, and

has become the de facto standard for it. However, SS2PL is blocking and constraining

(pessimistic), and with the proliferation of distribution and utilization of systems different from

traditional database systems (e.g., as in Cloud computing), less constraining types of CO

(e.g., Optimistic CO) may be needed for better performance.

Distributed recoverability

Unlike Serializability, Distributed recoverability and Distributed strictness can be achieved

efficiently in a straightforward way, similarly to the way Distributed CO is achieved: In each

database system they have to be applied locally, and employ a vote ordering strategy for

the Two-phase commit protocol (2PC; Raz 1992, page 307).

As has been mentioned above, Distributed SS2PL, including Distributed strictness

(recoverability) and Distributed commitment ordering (serializability), automatically employs

the needed vote ordering strategy, and is achieved (globally) when employed locally in each

(local) database system (as has been known and utilized for many years; as a matter of fact

locality is defined by the boundary of a 2PC participant (Raz 1992)).

Other major subjects of attention

The design of concurrency control mechanisms is often influenced by the following subjects:

https://en.wikipedia.org/wiki/Concurrency_control#cite_note-Bern2009-1
https://en.wikipedia.org/wiki/Commitment_ordering#Summary
https://en.wikipedia.org/wiki/Global_serializability#Quotations
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Commitment_ordering#Exact_characterization_of_voting-deadlocks_by_global_cycles
https://en.wikipedia.org/wiki/Deadlock#Distributed_deadlock
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Commitment_ordering#Distributed_optimistic_CO_.28DOCO.29
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Concurrency_control#Raz92
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Concurrency_control#Raz92

155

Recovery

All systems are prone to failures, and handling recovery from failure is a must. The

properties of the generated schedules, which are dictated by the concurrency control

mechanism, may have an impact on the effectiveness and efficiency of recovery. For

example, the Strictness property (mentioned in the section Recoverability above) is often

desirable for an efficient recovery.

CONCURRENCY CONTROL FOR SCHEDULER

Formal description

The following is an example of a schedule:

In this example, the horizontal axis represents the different transactions in the schedule D. The

vertical axis represents time order of operations. Schedule D consists of three transactions T1,

T2, T3. The schedule describes the actions of the transactions as seen by the DBMS. First T1

Reads and Writes to object X, and then Commits. Then T2 Reads and Writes to object Y and

Commits, and finally T3 Reads and Writes to object Z and Commits. This is an example of

a serial schedule, i.e., sequential with no overlap in time, because the actions of in all three

transactions are sequential, and the transactions are not interleaved in time.

Representing the schedule D above by a table (rather than a list) is just for the convenience of

identifying each transaction's operations in a glance. This notation is used throughout the article

below. A more common way in the technical literature for representing such schedule is by a list:

D = R1(X) W1(X) Com1 R2(Y) W2(Y) Com2 R3(Z) W3(Z) Com3

Usually, for the purpose of reasoning about concurrency control in databases, an operation

is modeled as atomic, occurring at a point in time, without duration. When this is not

https://en.wikipedia.org/wiki/Data_recovery
https://en.wikipedia.org/wiki/Concurrency_control#Recoverability
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Atomic_operation

156

satisfactory start and end time-points and possibly other point events are specified (rarely).

Real executed operations always have some duration and specified respective times of

occurrence of events within them (e.g., "exact" times of beginning and completion), but for

concurrency control reasoning usually only the precedence in time of the whole operations

(without looking into the quite complex details of each operation) matters, i.e., which

operation is before, or after another operation. Furthermore, in many cases the before/after

relationships between two specific operations do not matter and should not be specified,

while being specified for other pairs of operations.

In general operations of transactions in a schedule can interleave (i.e., transactions can be

executed concurrently), while time orders between operations in each transaction remain

unchanged as implied by the transaction's program. Since not always time orders between

all operations of all transactions matter and need to be specified, a schedule is, in general,

a partial order between operations rather than a total order (where order for each pair is

determined, as in a list of operations). Also in the general case each transaction may consist

of several processes, and itself be properly represented by a partial order of operations,

rather than a total order. Thus in general a schedule is a partial order of operations,

containing (embedding) the partial orders of all its transactions.

Time-order between two operations can be represented by an ordered pair of these

operations (e.g., the existence of a pair (OP1,OP2) means that OP1 is always before OP2),

and a schedule in the general case is a set of such ordered pairs. Such a set, a schedule, is

a partial order which can be represented by an acyclic directed graph (or directed acyclic

graph, DAG) with operations as nodes and time-order as a directed edge (no cycles are

allowed since a cycle means that a first (any) operation on a cycle can be both before and

after (any) another second operation on the cycle, which contradicts our perception of Time).

In many cases a graphical representation of such graph is used to demonstrate a schedule.

Comment: Since a list of operations (and the table notation used in this article) always

represents a total order between operations, schedules that are not a total order cannot be

represented by a list (but always can be represented by a DAG).

Types of schedule

Serial

The transactions are executed non-interleaved (see example above) i.e., a serial schedule is

one in which no transaction starts until a running transaction has ended.

Serializable

A schedule that is equivalent (in its outcome) to a serial schedule has

the serializability property.

https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Embedding
https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Set_\\\(mathematics\\\)
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Acyclic_directed_graph
https://en.wikipedia.org/wiki/Directed_edge
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Serializability

157

In schedule E, the order in which the actions of the transactions are executed is not the

same as in D, but in the end, E gives the same result as D.

Conflicting actions

Two actions are said to be in conflict (conflicting pair) if:

1. The actions belong to different transactions.

2. At least one of the actions is a write operation.

3. The actions access the same object (read or write).

The following set of actions is conflicting:

 R1(X), W2(X), W3(X) (3 conflicting pairs)

While the following sets of actions are not:

 R1(X), R2(X), R3(X)

 R1(X), W2(Y), R3(X)

Conflict equivalence

The schedules S1 and S2 are said to be conflict-equivalent if following two conditions

are satisfied:

1. Both schedules S1 and S2 involve the same set of transactions (including

ordering of actions within each transaction).

2. Both schedules have same set of conflicting operations.

Conflict-serializable

A schedule is said to be conflict-serializable when the schedule is conflict-equivalent to

one or more serial schedules.

Another definition for conflict-serializability is that a schedule is conflict-serializable if

and only if its precedence graph/serializability graph, when only committed transactions

https://en.wikipedia.org/wiki/Precedence_graph

158

are considered, is acyclic (if the graph is defined to include also uncommitted

transactions, then cycles involving uncommitted transactions may occur without conflict

serializability violation).

Which is conflict-equivalent to the serial schedule <T1,T2>, but not <T2,T1>.

Commitment ordering

A schedule is said to be commitment-ordered (commit-ordered), or commitment-order-serializable, if

it obeys the Commitment ordering (CO; also commit-ordering or commit-order-serializability)

schedule property. This means that the order in time of transactions' commitment events is

compatible with the precedence (partial) order of the respective transactions, as induced by their

schedule's acyclic precedence graph (serializability graph, conflict graph). This implies that it is also

conflict-serializable. The CO property is especially effective for achieving Global serializability in

distributed systems.

.

View equivalence

Two schedules S1 and S2 are said to be view-equivalent when the following conditions are satisfied:

1. If the transaction in S1 reads an initial value for object X, so does the

transaction in S2.

2. If the transaction in S1 reads the value written by transaction in S1

for object X, so does the transaction in S2.

3. If the transaction in S1 is the final transaction to write the value for an

object X, so is the transaction in S2.

View-serializable

A schedule is said to be view-serializable if it is view-equivalent to some serial schedule. Note that

by definition, all conflict-serializable schedules are view-serializable.

https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Global_serializability

159

Notice that the above example (which is the same as the example in the discussion of conflict-

serializable) is both view-serializable and conflict-serializable at the same time.) There are however

view-serializable schedules that are not conflict-serializable: those schedules with a transaction

performing a blind write:

The above example is not conflict-serializable, but it is view-serializable since it has a view-

equivalent serial schedule <T1, T2, T3>.

Since determining whether a schedule is view-serializable is NP-complete, view-serializability has

little practical interest.

Recoverable

Transactions commit only after all transactions whose changes they read, commit.

These schedules are recoverable. F is recoverable because T1 commits before T2, that makes the

value read by T2 correct. Then T2 can commit itself. In F2, if T1 aborted, T2 has to abort because

the value of A it read is incorrect. In both cases, the database is left in a consistent state.

https://en.wikipedia.org/wiki/Blind_write
https://en.wikipedia.org/wiki/NP-complete

160

Unrecoverable

If a transaction T1 aborts, and a transaction T2 commits, but T2 relied on T1, we have an

unrecoverable schedule.

In this example, G is unrecoverable, because T2 read the value of A written by T1, and committed.

T1 later aborted, therefore the value read by T2 is wrong, but since T2 committed, this schedule is

unrecoverable.

Avoids cascading aborts (rollbacks)

Also named cascadeless. A single transaction abort leads to a series of transaction rollback.

Strategy to prevent cascading aborts is to disallow a transaction from reading uncommitted changes

from another transaction in the same schedule.

The following examples are the same as the one from the discussion on recoverable:

In this example, although F2 is recoverable, it does not avoid cascading aborts. It can be seen that if

T1 aborts, T2 will have to be aborted too in order to maintain the correctness of the schedule as T2

has already read the uncommitted value written by T1.

The following is a recoverable schedule which avoids cascading abort. Note, however, that the

update of A by T1 is always lost (since T1 is aborted).

161

Cascading aborts avoidance is sufficient but not necessary for a schedule to be recoverable.

Strict

A schedule is strict - has the strictness property - if for any two transactions T1, T2, if a write

operation of T1 precedes a conflicting operation of T2 (either read or write), then the commit event of

T1 also precedes that conflicting operation of T2.

Any strict schedule is cascadeless, but not the converse. Strictness allows efficient recovery of

databases from failure.

	Concurrency control
	In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency controlensures that correct results for concurrent operations are generated, while getting...
	Why is concurrency control needed?[edit]
	Concurrency control mechanisms[edit]
	Categories[edit]
	Methods[edit]

	Major goals of concurrency control mechanisms[edit]
	Correctness
	Recoverability

	Distribution
	Distributed recoverability

	Other major subjects of attention
	Recovery

	CONCURRENCY CONTROL FOR SCHEDULER
	Formal description
	Types of schedule
	Serial
	Serializable
	Conflicting actions
	Conflict equivalence
	Conflict-serializable
	View equivalence
	View-serializable

	Recoverable
	Unrecoverable
	Avoids cascading aborts (rollbacks)
	Strict

