

67

UNIT-3

ER MODEL introduction

The entity-relationship model (or ER model) is a way of graphically representing the

logical relationships of entities (or objects) in order to create a database. The ER model was

first proposed by Peter Pin-Shan Chen of Massachusetts Institute of Technology (MIT) in

the 1970s.

The ER model defines the conceptual view of a database. It works around real-world entities and

the associations among them. At view level, the ER model is considered a good option for

designing databases.

Entity
An entity can be a real-world object, either animate or inanimate, that can be easily identifiable. For

example, in a school database, students, teachers, classes, and courses offered can be considered

as entities. All these entities have some attributes or properties that give them their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities with

attribute sharing similar values. For example, a Students set may contain all the students of a

school; likewise a Teachers set may contain all the teachers of a school from all faculties. Entity

sets need not be disjoint.

Entities are represented by means of rectangles. Rectangles are named with the entity set they

represent.

Attributes
Entities are represented by means of their properties, called attributes. All attributes have values.

For example, a student entity may have name, class, and age as attributes.

http://searchsoa.techtarget.com/definition/object
http://searchsqlserver.techtarget.com/definition/database

68

There exists a domain or range of values that can be assigned to attributes. For example, a

student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be

negative, etc.

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be divided further. For

example, a student's Roll number is an atomic value of 10 digits.

Attributes are the properties of entities. Attributes are represented by means of ellipses. Every

ellipse represents one attribute and is directly connected to its entity (rectangle).

 Composite attribute − Composite attributes are made of more than one simple attribute.

For example, a student's complete name may have first_name and last_name.

If the attributes are composite, they are further divided in a tree like structure. Every node is then

connected to its attribute. That is, composite attributes are represented by ellipses that are

connected with an ellipse.

69

 Derived attribute − Derived attributes are the attributes that do not exist in the physical

database, but their values are derived from other attributes present in the database. For

example, average_salary in a department should not be saved directly in the database,

instead it can be derived. For another example, age can be derived from data_of_birth.

 Derived attributes are depicted by dashed ellipse.

 Single-value attribute − Single-value attributes contain single value. For example −

Social_Security_Number.

 Multi-value attribute − Multi-value attributes may contain more than one values. For

example, a person can have more than one phone number, email_address, etc.

 Multivalued attributes are depicted by double ellipse

70

These attribute types can come together in a way like −

 simple single-valued attributes

 simple multi-valued attributes

 composite single-valued attributes

 composite multi-valued attributes

Entity-Sets(keys)

Key is an attribute or collection of attributes that uniquely identifies an entity among entity set.

For example, the roll_number of a student makes him/her identifiable among students.

 Super Key − A set of attributes (one or more) that collectively identifies an entity in an entity

set.

 Candidate Key − A minimal super key is called a candidate key. An entity set may have

more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the database designer

to uniquely identify the entity set.

71

Relationship
The association among entities is called a relationship. For example, an employee works_at a

department, a student enrolls in a course. Here, Works_at and Enrolls are called relationships.

Relationship Sets

A set of relationships of similar type is called a relationship set. Like entities, a relationship too can

have attributes. These attributes are called descriptive attributes.

Degree of Relationship

The number of participating entities in a relationship defines the degree of the relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree

There are three types of relationships that exist between Entities.

 Binary Relationship

 Recursive Relationship

 Ternary Relationship

Binary Relationship

Binary Relationship means relation between two Entities. This is further divided into three types.

1. One to One : This type of relationship is rarely seen in real world.

72

The above example describes that one student can enroll only for one course and a course will

also have only one Student. This is not what you will usually see in relationship.

2. One to Many : It reflects business rule that one entity is associated with many number of same

entity. The example for this relation might sound a little weird, but this menas that one student

can enroll to many courses, but one course will have one Student.

The arrows in the diagram describes that one student can enroll for only one course.

3. Many to One : It reflects business rule that many entities can be associated with just one entity.

For example, Student enrolls for only one Course but a Course can have many Students.

4. Many to Many :

73

The above diagram represents that many students can enroll for more than one courses.

Recursive Relationship

When an Entity is related with itself it is known as Recursive Relationship.

Ternary Relationship

Relationship of degree three is called Ternary relationship.

Let us now learn how the ER Model is represented by means of an ER diagram. Any object, for

example, entities, attributes of an entity, relationship sets, and attributes of relationship sets, can be

represented with the help of an ER diagram

Constraints:

An E-R enterprise schema may define certain constraints to which the contents of a database

must confirm.Two of the most important types of constraints are

1.Mapping cardinalities

2.participation constraints

74

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be associated with the

number of entities of other set via relationship set.

 One-to-one − One entity from entity set A can be associated with at most one entity of entity

set B and vice versa.

 One-to-many − One entity from entity set A can be associated with more than one entities

of entity set B however an entity from entity set B, can be associated with at most one

entity.

75

 Many-to-one − More than one entities from entity set A can be associated with at most one

entity of entity set B, however an entity from entity set B can be associated with more than

one entity from entity set A.

 Many-to-many − One entity from A can be associated with more than one entity from B and

vice versa.

76

Participation Constraints

 Total Participation − Each entity is involved in the relationship. Total participation is

represented by double lines.

 Partial participation − Not all entities are involved in the relationship. Partial participation is

represented by single lines.

The ER Model has the power of expressing database entities in a conceptual hierarchical

manner. As the hierarchy goes up, it generalizes the view of entities, and as we go deep in the

hierarchy, it gives us the detail of every entity included.

E-R Diagram

ER-Diagram is a visual representation of data that describes how data is related to each other.

Some examples are

77

Another example for E-R diagram

Here is a sample database (E-R diagram)

Students (name, gender, course) do projects(title). Each project has two supervisors (name,

gender, department). All students do a project but not all projects get taken. More than one

student can do the same project. Students meet one of their supervisors regular and these

meetings are recorded (date, time, student, supervisor, notes).

78

Symbols and Notations

79

Components of E-R Diagram

The E-R diagram has three main components.

1) Entity.

An Entity can be any object, place, person or class. In E-R Diagram, an entity is represented using

rectangles. Consider an example of an Organisation. Employee, Manager, Department, Product and

many more can be taken as entities from an Organisation.

Weak Entity

Weak entity is an entity that depends on another entity. Weak entity doen't have key attribute of their

own. Double rectangle represents weak entity.

2) Attribute

An Attribute describes a property or characterstic of an entity. For example, Name, Age, Address

etc can be attributes of a Student. An attribute is represented using eclipse.

80

Key Attribute

Key attribute represents the main characterstic of an Entity. It is used to represent Primary key.

Ellipse with underlying lines represent Key Attribute.

Composite Attribute

An attribute can also have their own attributes. These attributes are known as Composite attribute.

81

3) Relationship

A Relationship describes relations between entities. Relationship is represented using diamonds.

All the entities (rectangles) participating in a relationship, are connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary relationship. Cardinality is the

number of instance of an entity from a relation that can be associated with the relation.

82

 One-to-one − When only one instance of an entity is associated with the relationship, it is

marked as '1:1'. The following image reflects that only one instance of each entity should be

associated with the relationship. It depicts one-to-one relationship.

 One-to-many − When more than one instance of an entity is associated with a relationship,

it is marked as '1:N'. The following image reflects that only one instance of entity on the left

and more than one instance of an entity on the right can be associated with the relationship.

It depicts one-to-many relationship.

 Many-to-one − When more than one instance of entity is associated with the relationship, it

is marked as 'N:1'. The following image reflects that more than one instance of an entity on

the left and only one instance of an entity on the right can be associated with the

relationship. It depicts many-to-one relationship.

83

 Many-to-many − The following image reflects that more than one instance of an entity on

the left and more than one instance of an entity on the right can be associated with the

relationship. It depicts many-to-many relationship.

Going up in this structure is called generalization, where entities are clubbed together to represent

a more generalized view. For example, a particular student named Mira can be generalized along

with all the students. The entity shall be a student, and further, the student is a person. The reverse

is called specialization where a person is a student, and that student is Mira.

Entity Type Hierarchies(subclass and super class)

One entity type might be a subtype of another(very similar to subclasses in OO programming)

Entity type Y is a subtype (subclass) of an entity type X if and only if every Y is necessarily an

X. A subclass entity inherits all attributes and relationships of its superclass entity. This property

is called the attribute and relationship inheritance. A subclass entity may have its own specific

attributes and relationships (together with all the attributes and relationships it inherits from the

superclass).

.

https://en.wikipedia.org/wiki/Attribute_\\\(computing\\\)
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model#Relationships.2C_roles_and_cardinalities

84

 Freshman is a subtype of Student

A relationship exists between a Freshman entity and the

corresponding Student entity

 e.g., Freshman John is related to Student John

This relationship is called IsA

 Freshman IsA Student, an eagle IsA bird

 The two entities related by IsA are always descriptions of the same real-world

object

 Typically used in databases to be implemented as Object Oriented Models.

 The upper entity type is the more abstract entity type (supertype) from which

the lower entities inherit its attributes

Properties of IsA

Inheritance - All attributes of the supertype apply to the subtype.

 E.g., GPA attribute of Student applies to Freshman

 The subtype inherits all attributes of its supertype.

 The key of the supertype is also the key of the subtype

Transitivity - This property creates a hierarchy of IsA relationships

85

 Student is subtype of Person,

Freshman is subtype of Student,

therefore Freshman is also a subtype of Person

Advantage: Used to create a more concise and readable E-R diagram. It best maps to

object oriented approaches either to databases or related applications.

 Attributes common to different entity sets need not be repeated

 They can be grouped in one place as attributes of the supertype

 Attributes of (sibling) subtypes are likely to be different (and should be for this

to be very useful)

Example of IsA

86

Type Hierarchy associated constraints may apply:

Covering constraint: Union of subtype entities is equal to set of supertype entities.

An entity is an element of at least one subtype

 Employee is either a secretary or a technician (or even both) -- does not cover

 Class standing of Fr, So, Jn, Sn covers

Disjointness constraint: Sets of subtype entities are disjoint from one another (i.e.,

the sets are mutually exclusive). An entity can be an element of at most one entity

 Freshman, Sophomore, Junior, Senior are disjoint sets, and in this case covers,

too.

 The above Employee is not disjoint

NOTE:

 Participation constraints dictate whether each instance (member) of a superclass must

participate as an instance (member) of a subclass.

 Disjoint constraints define whether it is possible for an instance of a superclass to

simultaneously be a member of one or more subclasses.

 A superclass/subclass hierarchy is a hierarchical structure of a superclass and its various

subclasses in which each subclass has exactly one superclass.

Inheritance

We use all the above features of ER-Model in order to create classes of objects in object-oriented

programming. The details of entities are generally hidden from the user; this process known

as abstraction.

Inheritance is an important feature of Generalization and Specialization. It allows lower-level entities

to inherit the attributes of higher-level entities.

87

For example, the attributes of a Person class such as name, age, and gender can be inherited by

lower-level entities such as Student or Teacher.

Generalization
Generalization is a bottom-up approach in which two lower level entities combine to form a higher

level entity. In generalization, the higher level entity can also combine with other lower level entity to

make further higher level entity.

 (OR)

88

As mentioned above, the process of generalizing entities, where the generalized entities contain the

properties of all the generalized entities, is called generalization. In generalization, a number of

entities are brought together into one generalized entity based on their similar characteristics. For

example, pigeon, house sparrow, crow and dove can all be generalized as Birds.

Specialization
Specialization is opposite to Generalization. It is a top-down approach in which one higher level

entity can be broken down into two lower level entity. In specialization, some higher level entities

may not have lower-level entity sets at all.

 (OR)

Specialization is the opposite of generalization. In specialization, a group of entities is divided into

sub-groups based on their characteristics. Take a group ‘Person’ for example. A person has name,

date of birth, gender, etc. These properties are common in all persons, human beings. But in a

company, persons can be identified as employee, employer, customer, or vendor, based on what

role they play in the company.

89

Similarly, in a school database, persons can be specialized as teacher, student, or a staff, based

on what role they play in school as entities.

Creating tables with relationships: (tables with primary key and foreign key

relationship)

The relationship between 2 tables matches the Primary Key in one of the tables with a

Foreign Key in the second table.

If a table has a primary key defined on any field(s), then you can not have two records having the

same value of that field(s).

Example:
Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

ORDERS table:

90

CREATE TABLE ORDERS (

 ID INT NOT NULL,

 DATE DATETIME,

 CUSTOMER_ID INT references CUSTOMERS(ID),

 AMOUNT double,

 PRIMARY KEY (ID)

);

If ORDERS table has already been created, and the foreign key has not yet been set, use the

syntax for specifying a foreign key by altering a table.

ALTER TABLE ORDERS

 ADD FOREIGN KEY (Customer_ID) REFERENCES CUSTOMERS (ID);

DROP a FOREIGN KEY Constraint:

To drop a FOREIGN KEY constraint, use the following SQL:

ALTER TABLE ORDERS

 DROP FOREIGN KEY;

Implementation of key and Integrity Constraints:
Integrity constraints are used to ensure accuracy and consistency of data in a relational database.

Data integrity is handled in a relational database through the concept of referential integrity.

There are many types of integrity constraints that play a role in referential integrity (RI). These

constraints include Primary Key, Foreign Key, Unique Constraints and other constraints mentioned

above.

Constraints can be specified when the table is created (inside the CREATE

TABLE statement) or after the table is created (inside the ALTER TABLE

statement).

SQL CREATE TABLE + CONSTRAINT Syntax

CREATE TABLE table_name

(

column_name1 data_type(size) constraint_name,

91

column_name2 data_type(size) constraint_name,

column_name3 data_type(size) constraint_name,

....

);

 In SQL, we have the following constraints:

1. Specifying Attribute constraints and attribute Defaults(notnull,unique,default)

2. Specifying Key and Referential Integrity Constraints(primary,foreign key)

3. Giving names to Constraints: using Keyword CONSTRAINT we can give

names to constraint

4. Specifying Constraints on Tuples Using CHECK

 NOT NULL - Indicates that a column cannot store NULL value

 UNIQUE - Ensures that each row for a column must have a unique value

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Ensures that

a column (or combination of two or more columns) have an unique

identity which helps to find a particular record in a table more easily and

quickly

 FOREIGN KEY - Ensure the referential integrity of the data in one table

to match values in another table

 CHECK - Ensures that the value in a column meets a specific condition

 DEFAULT - Specifies a default value when specified none for this column

SQL NOT NULL Constraint

The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This means

that you cannot insert a new record, or update a record without adding a value

to this field.

The following SQL enforces the "P_Id" column and the "LastName" column to

not accept NULL values:

Example

CREATE TABLE PersonsNotNull
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,

92

FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

SQL UNIQUE Constraint on CREATE TABLE

The following SQL creates a UNIQUE constraint on the "P_Id" column when the

"Persons" table is created:

SQL Server / Oracle / MS Access:

CREATE TABLE Persons

(

P_Id int NOT NULL UNIQUE,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

City varchar(255)

)

SQL UNIQUE Constraint on ALTER TABLE

To create a UNIQUE constraint on the "P_Id" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD UNIQUE (P_Id)

To DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

DROP CONSTRAINT uc_PersonID

SQL PRIMARY KEY Constraint

The PRIMARY KEY constraint uniquely identifies each record in a database table.

Primary keys must contain UNIQUE values.

93

A primary key column cannot contain NULL values.

Most tables should have a primary key, and each table can have only ONE

primary key.

SQL PRIMARY KEY Constraint on CREATE TABLE

The following SQL creates a PRIMARY KEY on the "P_Id" column when the

"Persons" table is created:

MySQL:

CREATE TABLE Persons

(

P_Id int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

City varchar(255),

PRIMARY KEY (P_Id)

)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons

(

P_Id int NOT NULL PRIMARY KEY,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

City varchar(255)

)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY

constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons

(

94

P_Id int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

City varchar(255),

CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

)

Note: In the example above there is only ONE PRIMARY KEY (pk_PersonID).

However, the VALUE of the primary key is made up of TWO COLUMNS (P_Id +

LastName).

SQL PRIMARY KEY Constraint on ALTER TABLE

To create a PRIMARY KEY constraint on the "P_Id" column when the table is

already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD PRIMARY KEY (P_Id)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY

constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

Note: If you use the ALTER TABLE statement to add a primary key, the primary

key column(s) must already have been declared to not contain NULL values

(when the table was first created).

To DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Persons

DROP PRIMARY KEY

SQL Server / Oracle / MS Access:

95

ALTER TABLE Persons

DROP CONSTRAINT pk_PersonID

SQL FOREIGN KEY Constraint

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Let's illustrate the foreign key with an example. Look at the following two

tables:

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 2

4 24562 1

Note that the "P_Id" column in the "Orders" table points to the "P_Id" column in

the "Persons" table.

The "P_Id" column in the "Persons" table is the PRIMARY KEY in the "Persons"

table.

The "P_Id" column in the "Orders" table is a FOREIGN KEY in the "Orders" table.

96

The FOREIGN KEY constraint is used to prevent actions that would destroy links

between tables.

The FOREIGN KEY constraint also prevents invalid data from being inserted into

the foreign key column, because it has to be one of the values contained in the

table it points to.

SQL FOREIGN KEY Constraint on CREATE TABLE

The following SQL creates a FOREIGN KEY on the "P_Id" column when the

"Orders" table is created:

MySQL:

CREATE TABLE Orders

(

O_Id int NOT NULL,

OrderNo int NOT NULL,

P_Id int,

PRIMARY KEY (O_Id),

FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)

)

SQL Server / Oracle / MS Access:

CREATE TABLE Orders

(

O_Id int NOT NULL PRIMARY KEY,

OrderNo int NOT NULL,

P_Id int FOREIGN KEY REFERENCES Persons(P_Id)

)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY

constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders

(

97

O_Id int NOT NULL,

OrderNo int NOT NULL,

P_Id int,

PRIMARY KEY (O_Id),

CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

)

SQL FOREIGN KEY Constraint on ALTER TABLE

To create a FOREIGN KEY constraint on the "P_Id" column when the "Orders"

table is already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders

ADD FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY

constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders

ADD CONSTRAINT fk_PerOrders

FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

To DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Orders

DROP FOREIGN KEY fk_PerOrders

SQL Server / Oracle / MS Access:

ALTER TABLE Orders

DROP CONSTRAINT fk_PerOrders

98

Nested queries and sub queries:

A Subquery or Inner query or Nested query is a query within another SQL query and embedded

within the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further

restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with

the operators like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple columns are

in the main query for the subquery to compare its selected columns.

 An ORDER BY cannot be used in a subquery, although the main query can use an ORDER

BY. The GROUP BY can be used to perform the same function as the ORDER BY in a

subquery.

 Subqueries that return more than one row can only be used with multiple value operators,

such as the IN operator.

 The SELECT list cannot include any references to values that evaluate to a BLOB, ARRAY,

CLOB, or NCLOB.

 A subquery cannot be immediately enclosed in a set function.

 The BETWEEN operator cannot be used with a subquery; however, the BETWEEN operator

can be used within the subquery.

Subqueries with the SELECT Statement:

Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows:

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

99

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Now, let us check following subquery with SELECT statement:

SQL> SELECT *

 FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS

 WHERE SALARY > 4500) ;

This would produce the following result

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

100

Subqueries with the INSERT Statement:

Subqueries also can be used with INSERT statements. The INSERT statement uses the data

returned from the subquery to insert into another table. The selected data in the subquery can be

modified with any of the character, date or number functions.

The basic syntax is as follows:

INSERT INTO table_name [(column1 [, column2])]

 SELECT [*|column1 [, column2]

 FROM table1 [, table2]

 [WHERE VALUE OPERATOR]

Example:

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy

complete CUSTOMERS table into CUSTOMERS_BKP, following is the syntax:

SQL> INSERT INTO CUSTOMERS_BKP

 SELECT * FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS) ;

Subqueries with the UPDATE Statement:

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple

columns in a table can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows:

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example:

Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

101

Following example updates SALARY by 0.25 times in CUSTOMERS table for all the customers

whose AGE is greater than or equal to 27:

SQL> UPDATE CUSTOMERS

 SET SALARY = SALARY * 0.25

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 125.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 2125.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Subqueries with the DELETE Statement:

The subquery can be used in conjunction with the DELETE statement like with any other

statements mentioned above.

The basic syntax is as follows:

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example:

Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

102

Following example deletes records from CUSTOMERS table for all the customers whose AGE is

greater than or equal to 27:

SQL> DELETE FROM CUSTOMERS

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE > 27);

This would impact two rows and finally CUSTOMERS table would have the following records:

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

Nested Subquery:-If a Subquery contains another subquery, then the subquery inside

another subquery is called nested subquery.

Let us suppose we have table called “StudentCourse” which contains the information, which

student is connected to which Course. The structure of the table is:-

create table StudentCourse(StudentCourseid int identity(1,1), Studentid int,Courseid int)

nested subquery example:

select Firstname, lastname from student

where studentid in (select studentidfrom studentcourse

where courseid in (select courseid from course wherecoursename='Oracle'))

Result:-

http://2.bp.blogspot.com/_8iWtCcGgcH8/SsI5ZeuIYHI/AAAAAAAAAZI/2HUmz9TxDtw/s1600-h/NestedSubqu

103

Correlated Subquery:-If the outcome of a subquery depends on the value of a

column of its parent query table then the Sub query is called Correlated Subquery.

Suppose we want to get the details of the Courses (including the name of their course

admin) from the Course table, we can use the following query:-

select Coursename ,Courseadminid,(select Firstname+''+Lastname

from studentwhere studentid=Course.courseadminid)as CourseAdminName

from course

Result:-

NOTE:

 Correlated subquery runs once for each row selected by the outer query. It contains a reference to a value

from the row selected by the outer query.

Nested subquery runs only once for the entire nesting (outer) query. It does not contain any reference to the

outer query row.

Grouping (The GROUP BY Statement)

The GROUP BY statement is used in conjunction with the aggregate functions to

group the result-set by one or more columns.

SQL GROUP BY Syntax

SELECT column_name, aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name;

Example:

Consider the CUSTOMERS table is having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

http://3.bp.blogspot.com/_8iWtCcGgcH8/SsI6yM2mTzI/AAAAAAAAAZQ/JL9C1oXewdY/s1600-h/CorrelatedSubquer

104

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

If you want to know the total amount of salary on each customer, then GROUP BY query would be

as follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS

 GROUP BY NAME;

This would produce the following result:

+----------+-------------+

| NAME | SUM(SALARY) |

+----------+-------------+

| Chaitali | 6500.00 |

| Hardik | 8500.00 |

| kaushik | 2000.00 |

| Khilan | 1500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 2000.00 |

+----------+-------------+

Now, let us have following table where CUSTOMERS table has the following records with duplicate

names:

+----+----------+-----+-----------+----------+

105

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Ramesh | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | kaushik | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Now again, if you want to know the total amount of salary on each customer, then GROUP BY

query would be as follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS

 GROUP BY NAME;

This would produce the following result:

+---------+-------------+

| NAME | SUM(SALARY) |

+---------+-------------+

| Hardik | 8500.00 |

| kaushik | 8500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 3500.00 |

+---------+-------------+

The HAVING Clause

The HAVING clause enables you to specify conditions that filter which group results appear in the

final results.

106

The HAVING clause was added to SQL because the WHERE keyword could not be used with

aggregate functions.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause

places conditions on groups created by the GROUP BY clause.

Syntax:
The following is the position of the HAVING clause in a query:

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the

ORDER BY clause if used. The following is the syntax of the SELECT statement, including the

HAVING clause:

SELECT column1, column2

FROM table1, table2

WHERE [conditions]

GROUP BY column1, column2

HAVING [conditions]

ORDER BY column1, column2

Example:
Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

107

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is the example, which would display record for which similar age count would be more

than or equal to 2:

SQL > SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS

GROUP BY age

HAVING COUNT(age) >= 2;

This would produce the following result:

+----+--------+-----+---------+---------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+--------+-----+---------+---------+

| 2 | Khilan | 25 | Delhi | 1500.00 |

+----+--------+-----+---------+---------+

Another example :Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate S

10248 90 5 1996-07-04 3

10249 81 6 1996-07-05 1

10250 34 4 1996-07-08 2

And a selection from the "Employees" table:

108

EmployeeID LastName FirstName BirthDate Photo Notes

1 Davolio Nancy 1968-12-08 EmpID1.pic Education includes a BA....

2 Fuller Andrew 1952-02-19 EmpID2.pic Andrew received his BTS....

3 Leverling Janet 1963-08-30 EmpID3.pic Janet has a BS degree....

Now we want to find if any of the employees has registered more than 10

orders.

We use the following SQL statement:

Example:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM (Orders
INNER JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID)
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 10;

Now we want to find if the employees "Davolio" or "Fuller" have registered more

than 25 orders.

We add an ordinary WHERE clause to the SQL statement:

Example :

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders FROM
Orders
INNER JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID
WHERE LastName='Davolio' OR LastName='Fuller'
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 25;

Aggregration

Aggregration is a process when relation between two entity is treated as a single entity. Here the

relation between Center and Course, is acting as an Entity in relation with Visitor.

109

Aggregrate Functions

These functions return a single value after calculating from a group of values.

In database management an aggregate function is a function where the values of multiple rows are

grouped together as input on certain criteria to form a single value of more significant meaning or

measurement such as a set, a bag or a list.

SQL aggregate functions return a single value, calculated from values in a

column.

Common aggregate functions include:

 AVG() - Returns the average value

 COUNT- Returns the total number of values in a given column

 COUNT(*) - Returns the number of rows

 FIRST() - Returns the first value

 LAST() - Returns the last value

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

1) AVG()

Average returns average value after calculating from values in a numeric column.

Its general Syntax is,

https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Set_\\\(computer_science\\\)
https://en.wikipedia.org/wiki/Set_\\\(computer_science\\\)#Multiset
https://en.wikipedia.org/wiki/List_\\\(computing\\\)

110

SELECT AVG(column_name) from table_name

Example using AVG()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find average of salary will be,

SELECT avg(salary) from Emp;

Result of the above query will be,

avg(salary)

8200

111

2) COUNT()

Count returns the number of rows present in the table either based on some condition or without

condition.

Its general Syntax is,

SELECT COUNT(column_name) from table-name

Example using COUNT()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to count employees, satisfying specified condition is,

SELECT COUNT(name) from Emp where salary = 8000;

Result of the above query will be,

count(name)

2

112

Example of COUNT(distinct)

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query is,

SELECT COUNT(distinct salary) from emp;

Result of the above query will be,

count(distinct salary)

4

113

3) FIRST()

First function returns first value of a selected column

Syntax for FIRST function is,

SELECT FIRST(column_name) from table-name

Example of FIRST()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query

SELECT FIRST(salary) from Emp;

Result will be,

first(salary)

9000

114

4) LAST()

LAST return the return last value from selected column

Syntax of LAST function is,

SELECT LAST(column_name) from table-name

Example of LAST()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT LAST(salary) from emp;

Result of the above query will be,

last(salary)

8000

115

5) MAX()

MAX function returns maximum value from selected column of the table.

Syntax of MAX function is,

SELECT MAX(column_name) from table-name

Example of MAX()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find Maximum salary is,

SELECT MAX(salary) from emp;

Result of the above query will be,

MAX(salary)

10000

116

6) MIN()

MIN function returns minimum value from a selected column of the table.

Syntax for MIN function is,

SELECT MIN(column_name) from table-name

Example of MIN()

Consider following Emp table,

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find minimum salary is,

SELECT MIN(salary) from emp;

Result will be,

MIN(salary)

8000

117

7) SUM()

SUM function returns total sum of a selected columns numeric values.

Syntax for SUM is,

SELECT SUM(column_name) from table-name

Example of SUM()

Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find sum of salaries will be,

SELECT SUM(salary) from emp;

Result of above query is,

SUM(salary)

41000

We will use the Cars table to show how to use SQL aggregate functions:

118

CarMake Model Year Color

Toyota Camry XLE 2005 Gray

Honda Accord EX 2002 Black

Lexus ES 350 2008 Gray

BMW 3 Series Coupe 2008 Red

The most commonly used SQL aggregate function is the COUNT function. Here is an

example:

SELECT COUNT(*) FROM Cars WHERE Color = 'Gray';

The result of this will be the number 2.

You can select minimum and maximum Year from Cars as follows:

SELECT MIN(Year) FROM Cars;

SELECT MAX(Year) FROM Cars;

The results will be 2002 and 2008 respectively.

You can also select the average Year from the Cars table like this:

SELECT AVG(Year) FROM Cars;

The result will be 2005.75, which works out to be 2005 year and 9 months.

Finally you can use the SUM SQL aggregate function to get the sum of values in a certain

column:

SELECT SUM(Year) FROM Cars;

The result will be 8023, which is not a very useful number as we are summing years, but if

we had another column called DollarValue it would have made perfect sense to use SUM

to get the total value of our cars for example.

119

SQL Scalar functions

SQL scalar functions return a single value, based on the input value.

Useful scalar functions:

 UCASE() - Converts a field to upper case

 LCASE() - Converts a field to lower case

 MID() - Extract characters from a text field

 LEN() - Returns the length of a text field

 ROUND() - Rounds a numeric field to the number of decimals specified

 NOW() - Returns the current system date and time

 FORMAT() - Formats how a field is to be displayed

1) UCASE()

UCASE function is used to convert value of string column to Uppercase character.

Syntax of UCASE,

SELECT UCASE(column_name) from table-name

Example of UCASE()

Consider following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

120

405 Tiger 35 8000

SQL query for using UCASE is,

SELECT UCASE(name) from emp;

Result is,

UCASE(name)

ANU

SHANE

ROHAN

SCOTT

TIGER

2) LCASE()

LCASE function is used to convert value of string column to Lowecase character.

Syntax for LCASE is,

SELECT LCASE(column_name) from table-name

Example of LCASE()

Consider following Emp table

eid name age salary

121

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query for converting string value to Lower case is,

SELECT LCASE(name) from emp;

Result will be,

LCASE(name)

anu

shane

rohan

scott

tiger

3) MID()

MID function is used to extract substrings from column values of string type in a table.

122

Syntax for MID function is,

SELECT MID(column_name, start, length) from table-name

Example of MID()

Consider following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query will be,

select MID(name,2,2) from emp;

Result will come out to be,

MID(name,2,2)

nu

ha

123

oh

co

ig

4) ROUND()

ROUND function is used to round a numeric field to number of nearest integer. It is used on Decimal

point values. Syntax of Round function is,

SELECT ROUND(column_name, decimals) from table-name

Example of ROUND()

Consider following Emp table

eid name age salary

401 anu 22 9000.67

402 shane 29 8000.98

403 rohan 34 6000.45

404 scott 44 10000

405 Tiger 35 8000.01

SQL query is,

124

SELECT ROUND(salary) from emp;

Result will be,

ROUND(salary)

9001

8001

6000

10000

8000

SQL Alias
Alias is used to give an alias name to a table or a column. This is quite useful in case of large or

complex queries. Alias is mainly used for giving a short alias name for a column or a table with

complex names.

Syntax of Alias for table names,

SELECT column-name

from table-name

as alias-name

Following is an Example using Alias,

SELECT * from Employee_detail as ed;

Alias syntax for columns will be like,

SELECT

column-name as alias-name

125

from

table-name

Ordering(Order By Clause)
Order by clause is used with Select statement for arranging retrieved data in sorted order.

The Order byclause by default sort data in ascending order. To sort data in descending

order DESC keyword is used withOrder by clause.

Syntax of Order By

SELECT column-list|* from table-name order by asc|desc;

Example using Order by

Consider the following Emp table,

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SELECT * from Emp order by salary;

The above query will return result in ascending order of the salary.

eid name age salary

126

403 Rohan 34 6000

402 Shane 29 8000

405 Tiger 35 8000

401 Anu 22 9000

404 Scott 44 10000

Example of Order by DESC

Consider the Emp table described above,

SELECT * from Emp order by salary DESC;

The above query will return result in descending order of the salary.

eid name age salary

404 Scott 44 10000

401 Anu 22 9000

405 Tiger 35 8000

402 Shane 29 8000

403 Rohan 34 6000

127

Join in SQL
SQL Join is used to fetch data from two or more tables, which is joined to appear as single set of

data. SQL Join is used for combining column from two or more tables by using values common

to both tables. Join Keyword is used in SQL queries for joining two or more tables. Minimum

required condition for joining table, is(n-1) where n, is number of tables. A table can also join to

itself known as, Self Join.

Different Types of Join

The following are the types of JOIN that we can use in SQL.

 Natural join

 Cross join

 Inner join

 Outer join

Cross JOIN or Cartesian Product

This type of JOIN returns the cartesian product of rows of from the tables in Join. It will return a

table which consists of records which combines each row from the first table with each row of

the second table.

Cross JOIN Syntax is,

SELECT column-name-list

from table-name1

CROSS JOIN

table-name2;

Example of Cross JOIN

The class table,

128

ID NAME

1 abhi

2 adam

4 alex

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Cross JOIN query will be,

SELECT *

 from class,

 cross JOIN class_info;

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 1 DELHI

129

4 alex 1 DELHI

1 abhi 2 MUMBAI

2 adam 2 MUMBAI

4 alex 2 MUMBAI

1 abhi 3 CHENNAI

2 adam 3 CHENNAI

4 alex 3 CHENNAI

INNER Join or EQUI Join

This is a simple JOIN in which the result is based on matched data as per the equality condition

specified in the query.

Inner Join Syntax is,

SELECT column-name-list

from table-name1

INNER JOIN

table-name2

WHERE table-name1.column-name = table-name2.column-name;

Example of Inner JOIN

The class table,

130

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Inner JOIN query will be,

SELECT * from class, class_info where class.id = class_info.id;

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

131

3 alex 3 CHENNAI

Natural JOIN

Natural Join is a type of Inner join which is based on column having same name and same

datatype present in both the tables to be joined.

Natural Join Syntax is,

SELECT *

from table-name1

NATURAL JOIN

table-name2;

Example of Natural JOIN

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

132

1 DELHI

2 MUMBAI

3 CHENNAI

Natural join query will be,

SELECT * from class NATURAL JOIN class_info;

The result table will look like,

ID NAME Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

In the above example, both the tables being joined have ID column(same name and same

datatype), hence the records for which value of ID matches in both the tables will be the result of

Natural Join of these two tables.

Outer JOIN

Outer Join is based on both matched and unmatched data. Outer Joins subdivide further into,

 Left Outer Join

 Right Outer Join

 Full Outer Join

Left Outer Join

The left outer join returns a result table with the matched data of two tables then remaining

rows of the lefttable and null for the right table's column.

133

Left Outer Join syntax is,

SELECT column-name-list

from table-name1

LEFT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Left outer Join Syntax for Oracle is,

select column-name-list

from table-name1,

table-name2

on table-name1.column-name = table-name2.column-name(+);

Example of Left Outer Join

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

134

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Left Outer Join query will be,

SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

135

Right Outer Join

The right outer join returns a result table with the matched data of two tables then remaining

rows of the right table and null for the left table's columns.

Right Outer Join Syntax is,

select column-name-list

from table-name1

RIGHT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Right outer Join Syntax for Oracle is,

select column-name-list

from table-name1,

table-name2

on table-name1.column-name(+) = table-name2.column-name;

Example of Right Outer Join

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

136

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Right Outer Join query will be,

SELECT * FROM class RIGHT OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

null null 7 NOIDA

null null 8 PANIPAT

137

Full Outer Join

The full outer join returns a result table with the matched data of two table then remaining rows

of both lefttable and then the right table.

Full Outer Join Syntax is,

select column-name-list

from table-name1

FULL OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Example of Full outer join is,

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

138

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Full Outer Join query will be like,

SELECT * FROM class FULL OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

null null 7 NOIDA

null null 8 PANIPAT

139

SQL View

A view in SQL is a logical subset of data from one or more tables. View is used to restrict data

access.

Types of View

There are two types of view,

 Simple View

 Complex View

Simple View Complex View

Created from one table Created from one or more table

Does not contain functions Contain functions

Does not contain groups of data Contains groups of data

Syntax for creating a View,

CREATE or REPLACE view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

Example of Creating a View

Consider following Sale table,

140

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

14 ord4 1000 Adam

15 ord5 2000 Alex

SQL Query to Create View

CREATE or REPLACE view sale_view as select * from Sale where customer = 'Alex';

The data fetched from select statement will be stored in another object called sale_view. We can

use create seperately and replace too but using both together works better.

Example of Displaying a View

Syntax of displaying a view is similar to fetching data from table using Select statement.

SELECT * from sale_view;

Force View Creation

force keyword is used while creating a view. This keyword force to create View even if the table does

not exist. After creating a force View if we create the base table and enter values in it, the view will

be automatically updated.

Syntax for forced View is,

CREATE or REPLACE force view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

141

Update a View

Update command for view is same as for tables.

Syntax to Update a View is,

UPDATE view-name

set value

WHERE condition;

If we update a view it also updates base table data automatically.

Read-Only View(non-updatable view)

We can create a view with read-only option to restrict access to the view.

Syntax to create a view with Read-Only Access

CREATE or REPLACE force view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition with read-only

The above syntax will create view for read-only purpose, we cannot Update or Insert data into read-

only view. It will throw an error.

DROP SQL VIEW

Once a SQL VIEW has been created, you can drop it with the SQL DROP VIEW Statement.

Syntax :The syntax for the SQL DROP VIEW Statement is:

DROP VIEW view_name;

view_name - The name of the view that you wish to drop.

Example:Here is an example of how to use the SQL DROP VIEW Statement:

DROP VIEW sup_orders;

	Entity
	Attributes
	Types of Attributes
	Entity-Sets(keys)

	Relationship
	Relationship Sets
	Degree of Relationship
	Binary Relationship
	Recursive Relationship
	Ternary Relationship

	Mapping Cardinalities
	Participation Constraints
	E-R Diagram
	Symbols and Notations

	Components of E-R Diagram
	1) Entity.
	Weak Entity
	2) Attribute
	Key Attribute
	Composite Attribute
	3) Relationship

	Binary Relationship and Cardinality

	Entity Type Hierarchies(subclass and super class)
	Properties of IsA
	Example of IsA
	Type Hierarchy associated constraints may apply:
	Generalization
	Specialization
	Example:
	DROP a FOREIGN KEY Constraint:
	Implementation of key and Integrity Constraints:
	SQL CREATE TABLE + CONSTRAINT Syntax

	SQL NOT NULL Constraint
	Example
	SQL UNIQUE Constraint on CREATE TABLE
	SQL UNIQUE Constraint on ALTER TABLE
	To DROP a UNIQUE Constraint
	SQL PRIMARY KEY Constraint
	SQL PRIMARY KEY Constraint on CREATE TABLE
	SQL FOREIGN KEY Constraint
	Subqueries with the SELECT Statement:
	Example:
	Subqueries with the INSERT Statement:
	Example:
	Subqueries with the UPDATE Statement:
	Example:
	Subqueries with the DELETE Statement:
	Example:
	Grouping (The GROUP BY Statement)
	SQL GROUP BY Syntax

	Example:
	The HAVING Clause
	Syntax:
	Example:
	Another example :Below is a selection from the "Orders" table:
	Example:
	Example :
	Aggregration
	Aggregrate Functions
	1) AVG()
	Example using AVG()
	2) COUNT()
	Example using COUNT()
	Example of COUNT(distinct)
	3) FIRST()
	Example of FIRST()
	4) LAST()
	Example of LAST()
	5) MAX()
	Example of MAX()
	6) MIN()
	Example of MIN()
	7) SUM()
	Example of SUM()

	SQL Scalar functions
	1) UCASE()
	Example of UCASE()
	2) LCASE()
	Example of LCASE()
	3) MID()
	Example of MID()
	4) ROUND()
	Example of ROUND()
	SQL Alias
	Ordering(Order By Clause)
	Syntax of Order By
	Example using Order by
	Example of Order by DESC

	Join in SQL
	Different Types of Join
	Cross JOIN or Cartesian Product
	Example of Cross JOIN
	INNER Join or EQUI Join
	Example of Inner JOIN
	Natural JOIN
	Example of Natural JOIN
	Outer JOIN
	Left Outer Join
	Example of Left Outer Join
	Right Outer Join
	Example of Right Outer Join
	Full Outer Join
	Example of Full outer join is,

	SQL View
	Types of View
	Example of Creating a View
	Example of Displaying a View
	Force View Creation
	Update a View
	Read-Only View(non-updatable view)

