

17

1 Hemanth 34 13000

What is Field ?

A table consists of several records(row), each record can be broken into several smaller entities

known asFields. The above Employee table consist of four fields, ID, Name, Age and Salary.

What is a Column/Attribute ?

In Relational table, a column is a set of value of a particular type. The term Attribute is also used to

represent a column.

 A column header is called an attribute

For example, in Employee table, Name is a column that represents names of employee.

Name

Adam

Alex

Stuart

Ross

importance of NULL values

 An important concept is that if NULL values, which are used to represent the values of

attributes that may be unknown or may not apply to a tuple

Relational Model Notation

18

 An attribute A can be qualified with the relation name R to which it belongs by using the

dot notation R.A

 For example, STUDENT.Name or STUDENT.Age

Database Keys

Keys are very important part of Relational database. They are used to establish and identify relation

between tables. They also ensure that each record within a table can be uniquely identified by

combination of one or more fields within a table.

Super Key

Super Key is defined as a set of one or more attributes within a table that uniquely identifies each

record within a table(identify all other attributes uniquely). Super Key is a superset of Candidate

key.

For Example, We are having table

Book (BookId, BookName, Author)

So in this table we can have following super keys

 (BookId)
 (BookId,BookName)
 (BookId, BookName, Author)
 (BookId, Author)
 (BookName, Author)
 Each super key is able to uniquely identify each tuple (record).

Candidate Key

Candidate keys are defined as the set of fields from which primary key can be selected.

Candidate keys are a super key which are not having any redundant attributes. In other

words candidate keys are minimal super keys. For Example, In above illustration

 (BookId)
 (BookName,Author)

These two keys can be candidate keys, as remaining keys are having redundant attributes.

19

Primary Key

Primary key is a candidate key that is most appropriate to become main key of the table. It is a key

that uniquely identify each record in a table.

Composite Key

Key that consist of two or more attributes that uniquely identify an entity occurance is

called Composite key. But any attribute that makes up the Composite key is not a simple key in its

own

20

Secondary or Alternative key

The candidate key which are not selected for primary key are known as secondary keys or

alternative keys

Non-key Attribute

Non-key attributes are attributes other than candidate key attributes in a table.

Non-prime Attribute

Non-prime Attributes are attributes other than Primary attribute.

Constraints and their importance:

Constraints are rules used to limit the type of data that can go into a table, to maintain the accuracy

and integrity of the data inside table.

Constraints can be divided into following two types,

 Column level constraints : limits only column data

 Table level constraints : limits whole table data

Constraints are used to make sure that the integrity of data is maintained in the database. Following

are the most used constraints that can be applied to a table.

 NOT NULL

 UNIQUE

 PRIMARY KEY

 FOREIGN KEY

 CHECK

 DEFAULT

21

NOT NULL Constraint

NOT NULL constraint restricts a column from having a NULL value. Once NOT NULL constraint is

applied to a column, you cannot pass a null value to that column. It enforces a column to contain a

proper value. One important point to note about NOT NULL constraint is that it cannot be defined at

table level.

Example using NOT NULL constraint

CREATE table Student(s_id int NOT NULL, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will not take NULL value.

UNIQUE Constraint

UNIQUE constraint ensures that a field or column will only have unique values. A UNIQUE

constraint field will not have duplicate data. UNIQUE constraint can be applied at column level or

table level.

Example using UNIQUE constraint when creating a Table (Table Level)

CREATE table Student(s_id int NOT NULL UNIQUE, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will only have unique values and

wont take NULL value.

Example using UNIQUE constraint after Table is created (Column Level)

ALTER table Student add UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have unique value.

22

Primary Key Constraint

Primary key constraint uniquely identifies each record in a database. A Primary Key must contain

unique value and it must not contain null value. Usually Primary Key is used to index the data inside

the table.

Example using PRIMARY KEY constraint at Table Level

CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);

The above command will creates a PRIMARY KEY on the s_id .

Example using PRIMARY KEY constraint at Column Level

ALTER table Student add PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id .

Foreign Key Constraint

FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict actions

that would destroy links between tables. To understand FOREIGN KEY, let's see it using two table.

Customer_Detail Table :

c_id Customer_Name address

101 Adam Noida

102 Alex Delhi

103 Stuart Rohtak

23

Order_Detail Table :

Order_id Order_Name c_id

10 Order1 101

11 Order2 103

12 Order3 102

In Customer_Detail table, c_id is the primary key which is set as foreign key in Order_Detail table.

The value that is entered in c_id which is set as foreign key in Order_Detail table must be present

in Customer_Detailtable where it is set as primary key. This prevents invalid data to be inserted into

c_id column of Order_Detailtable.

Example using FOREIGN KEY constraint at Table Level

CREATE table Order_Detail(order_id int PRIMARY KEY,

order_name varchar(60) NOT NULL,

c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id));

In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column

of Customer_Detail.

Example using FOREIGN KEY constraint at Column Level

ALTER table Order_Detail add FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

Behaviour of Foriegn Key Column on Delete

There are two ways to maintin the integrity of data in Child table, when a particular record is deleted

in main table. When two tables are connected with Foriegn key, and certain data in the main table is

24

deleted, for which record exit in child table too, then we must have some mechanism to save the

integrity of data in child table.

 On Delete Cascade : This will remove the record from child table, if that value of foriegn key is

deleted from the main table.

 On Delete Null : This will set all the values in that record of child table as NULL, for which the

value of foriegn key is eleted from the main table.

 If we don't use any of the above, then we cannot delete data from the main table for which data

in child table exists. We will get an error if we try to do so.

ERROR : Record in child table exist

CHECK Constraint

CHECK constraint is used to restrict the value of a column between a range. It performs check on

the values, before storing them into the database. Its like condition checking before saving data into

a column.

Example using CHECK constraint at Table Level

create table Student(s_id int NOT NULL CHECK(s_id > 0),

Name varchar(60) NOT NULL,

Age int);

25

The above query will restrict the s_id value to be greater than zero.

Example using CHECK constraint at Column Level

ALTER table Student add CHECK(s_id > 0);

Default Constraint

 Default: sets a default value for the column. If you specify a column called date_added

with DEFAULT GETDATE() then every row you insert will automatically have the

date/time it was created as part of the row.

SQL: structured query language

SQL is a standard language for accessing and manipulating databases.

What is SQL?

 SQL stands for Structured Query Language

 SQL lets you access and manipulate databases

 SQL is an ANSI (American National Standards Institute) standard

What Can SQL do?

 SQL can execute queries against a database

 SQL can retrieve data from a database

 SQL can insert records in a database

 SQL can update records in a database

 SQL can delete records from a database

 SQL can create new databases

 SQL can create new tables in a database

 SQL can create stored procedures in a database

 SQL can create views in a database

 SQL can set permissions on tables, procedures, and views

26

SQL is a Standard - BUT....

Although SQL is an ANSI (American National Standards Institute) standard,

there are different versions of the SQL language.

However, to be compliant with the ANSI standard, they all support at least the

major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a

similar manner.

RDBMS is the basis for SQL, and for all modern database systems such as MS

SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

The data in RDBMS is stored in database objects called tables.

Database Tables

A database most often contains one or more tables. Each table is identified by a

name (e.g. "Customers" or "Orders"). Tables contain records (rows) with data.

In this tutorial we will use the well-known Northwind sample database (included

in MS Access and MS SQL Server).

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

México

D.F.

05021 Mexico

3 Antonio Moreno

Taquería

Antonio

Moreno

Mataderos 2312 México

D.F.

05023 Mexico

4

Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

27

The table above contains five records (one for each customer) and seven

columns (CustomerID, CustomerName, ContactName, Address, City,

PostalCode, and Country).

Keep in Mind That...

 SQL is NOT case sensitive: select is the same as SELECT

SQL Statements

Most of the actions you need to perform on a database are done with SQL

statements.

The following SQL statement selects all the records in the "Customers" table:

Example

SELECT * FROM Customers;

Semicolon after SQL Statements?

Some database systems require a semicolon at the end of each SQL statement.

Semicolon is the standard way to separate each SQL statement in database

systems that allow more than one SQL statement to be executed in the same

call to the server.

Some of The Most Important SQL Commands

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

28

simple database schema:

An sql schema is identified by a schema name, and includes an authorization identifier to

indicate the user or account who owns the schema, as well as descriptors for each element in the

schema. Schema elements include tables,constraints,views,domains, and other constructs(such as

authorization grants) that describe the schema

A schema is created via the CREATE SCHEMA statement which can include all schema

elements definitions

Example:

CREATE SCHEMA COMPANY AUTHORIZATION hemanth;

NOTE: Data Definition Language (DDL) statements -used to define the
database structure or schema.(refer DDL commands)

Data types

 SQL data type is an attribute that specifies type of data of any object. Each column, variable

and expression has related data type in SQL.

 You would use these data types while creating your tables. You would choose a particular

data type for a table column based on your requirement.

 The basic data types include

1. Numeric data types include integer numbers of various sizes(INTEGER or

INT,SMALLINT) And floating-point(real) numbers of various precision(FLOAT or REAL,

and DOUBLE PRECISION) Formatted numbers can be declared using DECIMAL(i,j)-or

DEC(i,j) or NUMERIC(i,,j)

2. Character-string data types are either fixed length-CHAR(n) or CHARACTER(n),where n

is the number of characters-or varying length-VARCHAR(n) or CHAR VARYING(n) or

CHARACTER VARYING(n),where n is maximum number of characters

3. Bit-string data types are either of fixed length n-BIT(n) or varying length BIT VARYING(n)

where n is the maximum number of bits. The default for n, the length of a character string

or bit string is 1

4. A Boolean data type has traditional values of TRUE or FALSE

29

5. date and time data type – the DATE data type has ten positions and its components are

YEAR,MONTH and DAY in the form YYYY-MM-DD. The TIME data type has at least eight

positions, with the components HOUR,MINUTE, and SECOND in the form HH:MM:SS

6. A TIMESTAMP data type includes DATE and TIME fields,plus a minimum of six positions

for decimal fractions of seconds and an optional WITH TIME ZONE qualifier. For example,

TIMESTAMP ‘2002-09-27 09:12:47 648302’

7. INTERVAL data type- Another data type related to DATE, TIME and TIMESTAMP is the

INTERVAL data type. This specifies an interval- a relative value that can be used to

increment or decrement an absolute value of a date ,time, or timestamp. Intervals are

qualified to be either YEAR/MONTH intervals or DAY/TIME intervals

DBMS Languages:

DDL(table definitions)

Data Definition Language (DDL) statements are used to define the database structure or schema. Some
examples:

o CREATE - to create objects in the database

o ALTER - alters the structure of the database

o DROP - delete objects from the database

o TRUNCATE - remove all records from a table, including all spaces allocated for the records are

removed

o COMMENT - add comments to the data dictionary

o RENAME - rename an object

DML

Data Manipulation Language (DML) statements are used for managing data within schema objects. Some
examples:

o SELECT - retrieve data from the a database

o INSERT - insert data into a table

o UPDATE - updates existing data within a table

o DELETE - deletes all records from a table, the space for the records remain

o MERGE - UPSERT operation (insert or update)

o CALL - call a PL/SQL or Java subprogram

o EXPLAIN PLAN - explain access path to data

o LOCK TABLE - control concurrency

30

DCL

Data Control Language (DCL) statements. Some examples:

o GRANT - gives user's access privileges to database

o REVOKE - withdraw access privileges given with the GRANT command

TCL

Transaction Control (TCL) statements are used to manage the changes made by DML statements. It allows
statements to be grouped together into logical transactions.

o COMMIT - save work done

o SAVEPOINT - identify a point in a transaction to which you can later roll back

o ROLLBACK - restore database to original since the last COMMIT

o SET TRANSACTION - Change transaction options like isolation level and what rollback segment to use

DDL commands with examples

create command

create is a DDL command used to create a table or a database.

Creating a Database

To create a database in RDBMS, create command is used. Following is the Syntax,

create database database-name;

Example for Creating Database

create database Test;

The above command will create a database named Test.

Creating a Table

create command is also used to create a table. We can specify names and datatypes of various

columns along.Following is the Syntax,

31

create table table-name

{

 column-name1 datatype1,

 column-name2 datatype2,

 column-name3 datatype3,

 column-name4 datatype4

};

create table command will tell the database system to create a new table with given table name and

column information.

Example for creating Table

create table Student(id int, name varchar, age int);

The above command will create a new table Student in database system with 3 columns, namely

id, name and age.

alter command

alter command is used for alteration of table structures. There are various uses of alter command,

such as,

 to add a column to existing table

 to rename any existing column

 to change datatype of any column or to modify its size.

 alter is also used to drop a column.

To Add Column to existing Table

Using alter command we can add a column to an existing table. Following is the Syntax,

alter table table-name add(column-name datatype);

Here is an Example for this,

32

alter table Student add(address char);

The above command will add a new column address to the Student table

To Add Multiple Column to existing Table

Using alter command we can even add multiple columns to an existing table. Following is the

Syntax,

alter table table-name add(column-name1 datatype1, column-name2 datatype2,

column-name3 datatype3);

Here is an Example for this,

alter table Student add(father-name varchar(60), mother-name varchar(60), dob

date);

The above command will add three new columns to the Student table

To Add column with Default Value

alter command can add a new column to an existing table with default values. Following is the

Syntax,

alter table table-name add(column-name1 datatype1 default data);

Here is an Example for this,

alter table Student add(dob date default '1-Jan-99');

The above command will add a new column with default value to the Student table

To Modify an existing Column

alter command is used to modify data type of an existing column . Following is the Syntax,

alter table table-name modify(column-name datatype);

Here is an Example for this,

alter table Student modify(address varchar(30));

33

The above command will modify address column of the Student table

To Rename a column

Using alter command you can rename an existing column. Following is the Syntax,

alter table table-name rename old-column-name to column-name;

Here is an Example for this,

alter table Student rename address to Location;

The above command will rename address column to Location.

To Drop a Column

alter command is also used to drop columns also. Following is the Syntax,

alter table table-name drop(column-name);

Here is an Example for this,

alter table Student drop(address);

The above command will drop address column from the Student table

truncate command

truncate command removes all records from a table. But this command will not destroy the table's

structure. When we apply truncate command on a table its Primary key is initialized. Following is its

Syntax,

truncate table table-name

Here is an Example explaining it.

truncate table Student;

The above query will delete all the records of Student table.

truncate command is different from delete command. delete command will delete all the rows from

a table whereas truncate command re-initializes a table(like a newly created table).

34

For eg. If you have a table with 10 rows and an auto_increment primary key, if you

use delete command to delete all the rows, it will delete all the rows, but will not initialize the primary

key, hence if you will insert any row after using delete command, the auto_increment primary key will

start from 11. But in case of truncatecommand, primary key is re-initialized.

drop command

drop query completely removes a table from database. This command will also destroy the table

structure. Following is its Syntax,

drop table table-name

Here is an Example explaining it.

drop table Student;

The above query will delete the Student table completely. It can also be used on Databases. For

Example, to drop a database,

 drop database Test;

The above query will drop a database named Test from the system.

rename query

rename command is used to rename a table. Following is its Syntax,

rename table old-table-name to new-table-name

Here is an Example explaining it.

rename table Student to Student-record;

The above query will rename Student table to Student-record.

DML commands with examples

Data Manipulation Language (DML) statements are used for managing data in database. DML

commands are not auto-committed. It means changes made by DML command are not permanent

to database, it can be rolled back.

35

1) INSERT command

Insert command is used to insert data into a table. Following is its general syntax,

INSERT into table-name values(data1,data2,..)

Lets see an example,

Consider a table Student with following fields.

S_id S_Name age

INSERT into Student values(101,'Adam',15);

The above command will insert a record into Student table.

S_id S_Name age

101 Adam 15

Example to Insert NULL value to a column

Both the statements below will insert NULL value into age column of the Student table.

INSERT into Student(id,name) values(102,'Alex');

Or,

INSERT into Student values(102,'Alex',null);

The above command will insert only two column value other column is set to null.

S_id S_Name age

101 Adam 15

102 Alex

36

Example to Insert Default value to a column

INSERT into Student values(103,'Chris',default)

S_id S_Name age

101 Adam 15

102 Alex

103 chris 14

Suppose the age column of student table has default value of 14.

Also, if you run the below query, it will insert default value into the age column, whatever the default

value may be.

INSERT into Student values(103,'Chris')

2) UPDATE command

Update command is used to update a row of a table. Following is its general syntax,

UPDATE table-name set column-name = value where condition;

Lets see an example,

update Student set age=18 where s_id=102;

S_id S_Name age

101 Adam 15

102 Alex 18

37

103 chris 14

Example to Update multiple columns

UPDATE Student set s_name='Abhi',age=17 where s_id=103;

The above command will update two columns of a record.

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

3) Delete command

Delete command is used to delete data from a table. Delete command can also be used with

condition to delete a particular row. Following is its general syntax,

DELETE from table-name;

Example to Delete all Records from a Table

DELETE from Student;

The above command will delete all the records from Student table.

38

Example to Delete a particular Record from a Table

Consider the following Student table

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

DELETE from Student where s_id=103;

The above command will delete the record where s_id is 103 from Student table.

S_id S_Name age

101 Adam 15

102 Alex 18

DCL commands with examples

Data Control Language(DCL) is used to control privilege in Database. To perform any operation in

the database, such as for creating tables, sequences or views we need privileges. Privileges are of

two types,

 System : creating session, table etc are all types of system privilege.

 Object : any command or query to work on tables comes under object privilege.

DCL defines two commands,

 Grant : Gives user access privileges to database.

 Revoke : Take back permissions from user.

39

To Allow a User to create Session

grant create session to username;

To Allow a User to create Table

grant create table to username;

To provide User with some Space on Tablespace to store Table

alter user username quota unlimited on system;

To Grant all privilege to a User

grant sysdba to username

To Grant permission to Create any Table

grant create any table to username

To Grant permission to Drop any Table

grant drop any table to username

To take back Permissions

revoke create table from username

TCL commands with examples

40

Transaction Control Language(TCL) commands are used to manage transactions in database.These

are used to manage the changes made by DML statements. It also allows statements to be grouped

together into logical transactions.

Commit command

Commit command is used to permanently save any transaaction into database.

Following is Commit command's syntax,

commit;

Rollback command

This command restores the database to last commited state. It is also use with savepoint command

to jump to a savepoint in a transaction.

Following is Rollback command's syntax,

rollback to savepoint-name;

Savepoint command

savepoint command is used to temporarily save a transaction so that you can rollback to that point

whenever necessary.

Following is savepoint command's syntax,

savepoint savepoint-name;

Example of Savepoint and Rollback

Following is the class table,

41

ID NAME

1 abhi

2 adam

4 alex

Lets use some SQL queries on the above table and see the results.

INSERT into class values(5,'Rahul');

commit;

UPDATE class set name='abhijit' where id='5';

savepoint A;

INSERT into class values(6,'Chris');

savepoint B;

INSERT into class values(7,'Bravo');

savepoint C;

SELECT * from class;

The resultant table will look like,

ID NAME

1 abhi

2 adam

4 alex

42

5 abhijit

6 chris

7 bravo

Now rollback to savepoint B

rollback to B;

SELECT * from class;

The resultant table will look like

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

6 chris

Now rollback to savepoint A

rollback to A;

SELECT * from class;

The result table will look like

ID NAME

43

1 abhi

2 adam

4 alex

5 abhijit

Basic SQL querying

SELECT query:

Select query is used to retrieve data from a tables. It is the most used SQL query. We can retrieve

complete tables, or partial by mentioning conditions using WHERE clause.

Syntax of SELECT Query

SELECT column-name1, column-name2, column-name3, column-nameN from table-name;

Example for SELECT Query

Conside the following Student table,

S_id S_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

44

104 Ankit 22 Panipat

SELECT s_id, s_name, age from Student.

The above query will fetch information of s_id, s_name and age column from Student table

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

104 Ankit 22

Example to Select all Records from Table

A special character asterisk * is used to address all the data(belonging to all columns) in a

query. SELECTstatement uses * character to retrieve all records from a table.

SELECT * from student;

The above query will show all the records of Student table, that means it will show complete Student

table as result.

S_id S_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

45

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Example to Select particular Record based on Condition

SELECT * from Student WHERE s_name = 'Abhi';

103 Abhi 17 Rohtak

Example to Perform Simple Calculations using Select Query

Conside the following Employee table.

eid Name age salary

101 Adam 26 5000

102 Ricky 42 8000

103 Abhi 22 10000

104 Rohan 35 5000

SELECT eid, name, salary+3000 from Employee;

The above command will display a new column in the result, showing 3000 added into existing

salaries of the employees.

46

eid Name salary+3000

101 Adam 8000

102 Ricky 11000

103 Abhi 13000

104 Rohan 8000

Project query:

project query is used to create new relation by deleting columns from an existing relation i.e., A new

relation is created from another existing relation by selecting only those columns requested by the

user from projection. Following example (from above Employee table) show projection

SELECT age, eid

FROM EMPLOYEE;

using WHERE clause

Where clause is used to specify condition while retriving data from table. Where clause is used

mostly with Select, Update and Delete query. If condititon specified by where clause is true then only

the result from table is returned.

Syntax for WHERE clause

SELECT column-name1,

 column-name2,

 column-name3,

 column-nameN

47

from table-name WHERE [condition];

Example using WHERE clause

Consider a Student table,

s_id s_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Now we will use a SELECT statement to display data of the table, based on a condition, which we

will add to the SELECT query using WHERE clause.

SELECT s_id,

 s_name,

 age,

 address

from Student WHERE s_id=101;

s_id s_Name age address

101 Adam 15 Noida

48

Text Fields vs. Numeric Fields

SQL requires single quotes around text values (most database systems will also

allow double quotes).

However, numeric fields should not be enclosed in quotes:

Example

SELECT * FROM Customers
WHERE CustomerID=1;

Example

SELECT * FROM Customers

WHERE Country='Mexico';

Operators in The WHERE Clause

The following operators can be used in the WHERE clause:

Operator Description

= Equal

<> Not equal. Note: In some versions of SQL this operator may be

written as !=

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

49

IN To specify multiple possible values for a column

What is an Operator in SQL?
An operator is a reserved word or a character used primarily in an SQL statement's WHERE clause

to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for

multiple conditions in a statement.

 Arithmetic operators

 Comparison operators

 Logical operators

 Operators used to negate conditions

SQL Arithmetic Operators:
Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

+ Addition - Adds values on either side of the

operator

a + b will

give 30

- Subtraction - Subtracts right hand operand from left

hand operand

a - b will

give -10

* Multiplication - Multiplies values on either side of

the operator

a * b will

give 200

http://www.tutorialspoint.com/sql/sql-arithmetic-operators.htm

50

/ Division - Divides left hand operand by right hand

operand

b / a will

give 2

% Modulus - Divides left hand operand by right hand

operand and returns remainder

b % a

will give

0

SQL Comparison Operators:
Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or not, if yes then

condition becomes true.

(a = b) is

not true.

!= Checks if the values of two operands are equal or not, if values are not

equal then condition becomes true.

(a != b)

is true.

<> Checks if the values of two operands are equal or not, if values are not

equal then condition becomes true.

(a <> b)

is true.

> Checks if the value of left operand is greater than the value of right

operand, if yes then condition becomes true.

(a > b) is

not true.

< Checks if the value of left operand is less than the value of right operand,

if yes then condition becomes true.

(a < b) is

true.

>= Checks if the value of left operand is greater than or equal to the value of

right operand, if yes then condition becomes true.

(a >= b)

is not

true.

<= Checks if the value of left operand is less than or equal to the value of (a <= b)

http://www.tutorialspoint.com/sql/sql-comparison-operators.htm

51

right operand, if yes then condition becomes true. is true.

!< Checks if the value of left operand is not less than the value of right

operand, if yes then condition becomes true.

(a !< b)

is false.

!> Checks if the value of left operand is not greater than the value of right

operand, if yes then condition becomes true.

(a !> b)

is true.

SQL Logical Operators:
Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description

ALL The ALL operator is used to compare a value to all values in

another value set.

AND The AND operator allows the existence of multiple conditions in

an SQL statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable

value in the list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are

within a set of values, given the minimum value and the

maximum value.

EXISTS The EXISTS operator is used to search for the presence of a

row in a specified table that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal

values that have been specified.

http://www.tutorialspoint.com/sql/sql-logical-operators.htm

52

LIKE The LIKE operator is used to compare a value to similar values

using wildcard operators.

NOT The NOT operator reverses the meaning of the logical operator

with which it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT

IN, etc. This is a negate operator.

OR The OR operator is used to combine multiple conditions in an

SQL statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL

value.

UNIQUE The UNIQUE operator searches every row of a specified table

for uniqueness (no duplicates).

Numeric Functions: These are functions that accept numeric input and return numeric

values.

Numeric functions are used to perform operations on numbers. They accept

numeric values as input and return numeric values as output. Few of the Numeric

functions are:

Function

Name
Return Value

ABS (x) Absolute value of the number 'x'

CEIL (x) Integer value that is Greater than or equal to the number 'x'

FLOOR (x) Integer value that is Less than or equal to the number 'x'

TRUNC (x, y) Truncates value of number 'x' up to 'y' decimal places

ROUND (x, y) Rounded off value of the number 'x' up to the number 'y' decimal places

53

The following examples explains the usage of the above numeric functions

Function Name Examples Return Value

ABS (x)
ABS (1)

ABS (-1)

1

-1

CEIL (x)

CEIL (2.83)

CEIL (2.49)

CEIL (-1.6)

3

3

-1

FLOOR (x)

FLOOR (2.83)

FLOOR (2.49)

FLOOR (-1.6)

2

2

-2

TRUNC (x, y)

ROUND (125.456, 1)

ROUND (125.456, 0)

ROUND (124.456, -1)

125.4

125

120

ROUND (x, y)

TRUNC (140.234, 2)

TRUNC (-54, 1)

TRUNC (5.7)

TRUNC (142, -1)

140.23

54

5

140

These functions can be used on database columns.

For Example: Let's consider the product table used in sql joins. We can use ROUND

to round off the unit_price to the nearest integer, if any product has prices in

fraction.

SELECT ROUND (unit_price) FROM product;

2) Character or Text Functions:

Character or text functions are used to manipulate text strings. They accept strings

or characters as input and can return both character and number values as output.

Few of the character or text functions are as given below:

Function Name Return Value

LOWER (string_value) All the letters in 'string_value'is converted to lowercase.

54

UPPER (string_value) All the letters in 'string_value'is converted to uppercase.

INITCAP (string_value) All the letters in 'string_value'is converted to mixed case.

LTRIM (string_value,

trim_text)
All occurrences of 'trim_text' is removed from the left of'string_value'.

RTRIM (string_value,

trim_text)
All occurrences of 'trim_text' is removed from the right of'string_value' .

TRIM (trim_text FROM

string_value)

All occurrences of 'trim_text'from the left and right

of'string_value' , 'trim_text' can also be only one character long .

SUBSTR (string_value, m,

n)

Returns 'n' number of characters from 'string_value'starting from the

'm' position.

LENGTH (string_value) Number of characters in'string_value' in returned.

LPAD (string_value, n,

pad_value)

Returns 'string_value' left-padded with 'pad_value' . The length of the

whole string will be of 'n' characters.

RPAD (string_value, n,

pad_value)

Returns 'string_value' right-padded with 'pad_value' . The length of the

whole string will be of 'n' characters.

For Example, we can use the above UPPER() text function with the column value as

follows.

SELECT UPPER (product_name) FROM product;

The following examples explains the usage of the above character or text functions

Function Name Examples Return Value

LOWER(string_value) LOWER('Good Morning') good morning

UPPER(string_value) UPPER('Good Morning') GOOD MORNING

INITCAP(string_value) INITCAP('GOOD MORNING') Good Morning

LTRIM(string_value, trim_text) LTRIM ('Good Morning', 'Good) Morning

RTRIM (string_value, trim_text) RTRIM ('Good Morning', ' Morning') Good

TRIM (trim_text FROM string_value) TRIM ('o' FROM 'Good Morning') Gd Mrning

55

SUBSTR (string_value, m, n) SUBSTR ('Good Morning', 6, 7) Morning

LENGTH (string_value) LENGTH ('Good Morning') 12

LPAD (string_value, n, pad_value) LPAD ('Good', 6, '*') **Good

RPAD (string_value, n, pad_value) RPAD ('Good', 6, '*') Good**

3) Date and time Functions:

These are functions that take values that are of datatype DATE as input and return

values of datatypes DATE, except for the MONTHS_BETWEEN function, which

returns a number as output.

Few date functions are as given below.

Function Name Return Value

ADD_MONTHS (date, n) Returns a date value after adding 'n' months to the date'x'.

MONTHS_BETWEEN

(x1, x2)
Returns the number of months between dates x1 and x2.

ROUND (x,

date_format)

Returns the date 'x' rounded off to the nearest century, year, month, date,

hour, minute, or second as specified by the'date_format'.

TRUNC (x, date_format)
Returns the date 'x' lesser than or equal to the nearest century, year, month,

date, hour, minute, or second as specified by the 'date_format'.

NEXT_DAY (x,

week_day)
Returns the next date of the'week_day' on or after the date'x' occurs.

LAST_DAY (x)
It is used to determine the number of days remaining in a month from the

date 'x'specified.

SYSDATE Returns the systems current date and time.

NEW_TIME (x, zone1,

zone2)
Returns the date and time in zone2 if date 'x' represents the time in zone1.

The below table provides the examples for the above functions

Function Name Examples Return Value

56

ADD_MONTHS () ADD_MONTHS ('16-Sep-81', 3) 16-Dec-81

MONTHS_BETWEEN() MONTHS_BETWEEN ('16-Sep-81', '16-Dec-81') 3

NEXT_DAY() NEXT_DAY ('01-Jun-08', 'Wednesday') 04-JUN-08

LAST_DAY() LAST_DAY ('01-Jun-08') 30-Jun-08

NEW_TIME() NEW_TIME ('01-Jun-08', 'IST', 'EST') 31-May-08

4) Conversion Functions:

These are functions that help us to convert a value in one form to another form.

For Ex: a null value into an actual value, or a value from one datatype to another

datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE.

Few of the conversion functions available in oracle are:

Function Name Return Value

TO_CHAR (x [,y])
Converts Numeric and Date values to a character string value. It cannot be

used for calculations since it is a string value.

TO_DATE (x [,

date_format])

Converts a valid Numeric and Character values to a Date value. Date is

formatted to the format specified by 'date_format'.

NVL (x, y) If 'x' is NULL, replace it with 'y'. 'x'and 'y' must be of the same datatype.

DECODE (a, b, c, d, e,

default_value)

Checks the value of 'a', if a = b, then returns 'c'. If a = d, then returns 'e'.

Else, returns default_value.

The below table provides the examples for the above functions

Function Name Examples Return Value

TO_CHAR ()
TO_CHAR (3000, '$9999')

TO_CHAR (SYSDATE, 'Day, Month YYYY')

$3000

Monday, June 2008

TO_DATE () TO_DATE ('01-Jun-08') 01-Jun-08

NVL () NVL (null, 1) 1

57

TO_CHAR function
TO_CHAR function is used to typecast a numeric or date input to character type with a format

model (optional).

Syntax

TO_CHAR(number1, [format], [nls_parameter])

For number to character conversion, nls parameters can be used to specify decimal characters,

group separator, local currency model, or international currency model. It is an optional

specification - if not available, session level nls settings will be used. For date to character

conversion, the nls parameter can be used to specify the day and month names, as applicable.

Dates can be formatted in multiple formats after converting to character types using TO_CHAR

function. The TO_CHAR function is used to have Oracle 11g display dates in a particular format.

Format models are case sensitive and must be enclosed within single quotes.

Consider the below SELECT query. The query format the HIRE_DATE and SALARY columns of

EMPLOYEES table using TO_CHAR function.

SELECT first_name,

 TO_CHAR (hire_date, 'MONTH DD, YYYY') HIRE_DATE,

 TO_CHAR (salary, '$99999.99') Salary

FROM employees

WHERE rownum < 5;

FIRST_NAME HIRE_DATE SALARY

-------------------- ------------------ ----------

Steven JUNE 17, 2003 $24000.00

Neena SEPTEMBER 21, 2005 $17000.00

Lex JANUARY 13, 2001 $17000.00

Alexander JANUARY 03, 2006 $9000.00

The first TO_CHAR is used to convert the hire date to the date format MONTH DD, YYYY i.e.

month spelled out and padded with spaces, followed by the two-digit day of the month, and then the

four-digit year. If you prefer displaying the month name in mixed case (that is, "December"), simply

use this case in the format argument: ('Month DD, YYYY').

58

The second TO_CHAR function in Figure 10-39 is used to format the SALARY to display the

currency sign and two decimal positions.

Oracle offers comprehensive set of format models. The below table shows the list of format models

which can be used to typecast date and number values as character using TO_CHAR.

Format Model Description

,(comma) It returns a comma in the specified position. You can specify multiple

commas in a number format model. Restrictions:A comma element cannot

begin a number format model. A comma cannot appear to the right of a

decimal character or period in a number format model.

.(period) Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model

$ Returns value with a leading dollar sign

0 Returns leading zeros. Returns trailing zeros.

9 Returns value with the specified number of digits with a leading space if

positive or with a leading minus if negative. Leading zeros are blank,

except for a zero value, which returns a zero for the integer part of the

fixed-point number.

B Returns blanks for the integer part of a fixed-point number when the integer

part is zero (regardless of "0"s in the format model).

C Returns in the specified position the ISO currency symbol (the current

value of the NLS_ISO_CURRENCY parameter).

D Returns in the specified position the decimal character, which is the current

value of the NLS_NUMERIC_CHARACTER parameter. The default is a

period (.). Restriction: You can specify only one decimal character in a

number format model.

59

EEE Returns a value using in scientific notation.

FM Returns a value with no leading or trailing blanks.

G Returns in the specified position the group separator (the current value of

the NLS_NUMERIC_CHARACTER parameter). You can specify multiple

group separators in a number format model. Restriction: A group separator

cannot appear to the right of a decimal character or period in a number

format model

L Returns in the specified position the local currency symbol (the current

value of the NLS_CURRENCY parameter).

MI Returns negative value with a trailing minus sign (-). Returns positive value

with a trailing blank. Restriction: The MI format element can appear only in

the last position of a number format model.

PR Returns negative value in . It can appear only in the end of a number

format model.

RN,rm Returns a value as Roman numerals in uppercase. Returns a value as

Roman numerals in lowercase. Value can be an integer between 1 and

3999.

S Returns negative value with a leading or trailing minus sign (-). Returns

positive value with a leading or trailing plus sign (+). Restriction: The S

format element can appear only in the first or last position of a number

format model.

TM "Text minimum". Returns (in decimal output) the smallest number of

characters possible. This element is case-insensitive.

U Returns in the specified position the "Euro" (or other) dual currency symbol

(the current value of the NLS_DUAL_CURRENCY parameter).

60

V Returns a value multiplied by 10n (and if necessary, round it up), where n is

the number of 9's after the "V".

X Returns the hexadecimal value of the specified number of digits.

TO_NUMBER function
The TO_NUMBER function converts a character value to a numeric datatype. If the string being

converted contains nonnumeric characters, the function returns an error.

Syntax

TO_NUMBER (string1, [format], [nls_parameter])

The below table shows the list of format models which can be used to typecast character values as

number using TO_NUMBER.

Format Model Description

CC Century

SCC Century BC prefixed with -

YYYY Year with 4 numbers

SYYY Year BC prefixed with -

IYYY ISO Year with 4 numbers

YY Year with 2 numbers

RR Year with 2 numbers with Y2k compatibility

YEAR Year in characters

61

SYEAR Year in characters, BC prefixed with -

BC BC/AD Indicator

Q Quarter in numbers (1,2,3,4)

MM Month of year 01, 02...12

MONTH Month in characters (i.e. January)

MON JAN, FEB

WW Week number (i.e. 1)

W Week number of the month (i.e. 5)

IW Week number of the year in ISO standard.

DDD Day of year in numbers (i.e. 365)

DD Day of the month in numbers (i.e. 28)

D Day of week in numbers(i.e. 7)

DAY Day of the week in characters (i.e. Monday)

FMDAY Day of the week in characters (i.e. Monday)

DY Day of the week in short character description (i.e. SUN)

62

J Julian Day (number of days since January 1 4713 BC, where January 1

4713 BC is 1 in Oracle)

HH,H12 Hour number of the day (1-12)

HH24 Hour number of the day with 24Hours notation (0-23)

AM, PM AM or PM

MI, SS Number of minutes and seconds (i.e. 59) ,

SSSSS Number of seconds this day.

DS Short date format. Depends on NLS-settings. Use only with timestamp.

DL Long date format. Depends on NLS-settings. Use only with timestamp.

E Abbreviated era name. Valid only for calendars: Japanese Imperial, ROC

Official, Thai Buddha.

EE The full era name

FF The fractional seconds. Use with timestamp.

FF1..FF9 The fractional seconds. Use with timestamp. The digit controls the number

of decimal digits used for fractional seconds.

FM Fill Mode: suppresses blanks in output from conversion

FX Format Exact: requires exact pattern matching between data and format

model.

63

IYY OR IY OR I The last 3,2,1 digits of the ISO standard year. Output only

RM The Roman numeral representation of the month (I .. XII)

RR The last 2 digits of the year.

RRRR The last 2 digits of the year when used for output. Accepts fout-digit years

when used for input.

SP Spelled format. Can appear of the end of a number element. The result is

always in english. For example month 10 in format MMSP returns "ten"

SPTH Spelled and ordinal format; 1 results in first.

TH Converts a number to it's ordinal format. For example 1 becoms 1st.

TS Short time format. Depends on NLS-settings. Use only with timestamp.

TZD Abbreviated time zone name. ie PST.

TZH,TZM Time zone hour/minute displacement.

TZR Time zone region

X Local radix character. In America this is a period (.)

The SELECT queries below accept numbers as character inputs and prints them following the

format specifier.

SELECT TO_NUMBER('121.23', '9G999D99')

FROM DUAL

64

TO_NUMBER('121.23','9G999D99')

 121.23

SELECT TO_NUMBER('1210.73', '9999.99')

FROM DUAL;

TO_NUMBER('1210.73','9999.99')

 1210.73

TO_DATE function
The function takes character values as input and returns formatted date equivalent of the same.

The TO_DATE function allows users to enter a date in any format, and then it converts the entry

into the default format used by Oracle 11g.

Syntax:

TO_DATE(string1, [format_mask], [nls_language])

A format_mask argument consists of a series of elements representing exactly what the data

should look like and must be entered in single quotation marks.

Format Model Description

YEAR Year, spelled out

YYYY 4-digit year

YYY,YY,Y Last 3, 2, or 1 digit(s) of year.

IYY,IY,I Last 3, 2, or 1 digit(s) of ISO year.

IYYY 4-digit year based on the ISO standard

65

RRRR Accepts a 2-digit year and returns a 4-digit year.

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1).

MM Month (01-12; JAN = 01).

MON Abbreviated name of month.

MONTH Name of month, padded with blanks to length of 9 characters.

RM Roman numeral month (I-XII; JAN = I).

WW Week of year (1-53) where week 1 starts on the first day of the year and

continues to the seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and

ends on the seventh.

IW Week of year (1-52 or 1-53) based on the ISO standard.

D Day of week (1-7).

DAY Name of day.

DD Day of month (1-31).

DDD Day of year (1-366).

DY Abbreviated name of day.

66

J Julian day; the number of days since January 1, 4712 BC.

HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

MI,SS Minute (0-59).

SSSSS Seconds past midnight (0-86399).

FF Fractional seconds. Use a value from 1 to 9 after FF to indicate the number

of digits in the fractional seconds. For example, 'FF4'.

AM,PM Meridian indicator

AD,BC AD, BC indicator

TZD Daylight savings information. For example, 'PST'

TZH,TZM,TZR Time zone hour/minute/region.

The following example converts a character string into a date:

SELECT TO_DATE('January 15, 1989, 11:00 A.M.', 'Month dd, YYYY, HH:MI A.M.',

'NLS_DATE_LANGUAGE = American')

FROM DUAL;

TO_DATE('

15-JAN-89

	What is SQL?
	SQL is a Standard - BUT....
	Keep in Mind That...
	SQL Statements
	Example
	Semicolon after SQL Statements?
	Some of The Most Important SQL Commands
	Data types
	DBMS Languages:
	DDL(table definitions)
	DML
	DCL
	TCL
	DDL commands with examples
	create command
	Creating a Database
	Example for Creating Database
	Creating a Table
	Example for creating Table

	alter command
	To Add Column to existing Table
	To Add Multiple Column to existing Table
	To Add column with Default Value
	To Modify an existing Column
	To Rename a column
	To Drop a Column
	truncate command
	drop command
	rename query

	DML commands with examples
	1) INSERT command
	Example to Insert NULL value to a column
	Example to Insert Default value to a column
	2) UPDATE command
	Example to Update multiple columns
	3) Delete command
	Example to Delete all Records from a Table
	Example to Delete a particular Record from a Table
	DCL commands with examples
	To Allow a User to create Session
	To Allow a User to create Table
	To provide User with some Space on Tablespace to store Table
	To Grant all privilege to a User
	To Grant permission to Create any Table
	To Grant permission to Drop any Table
	To take back Permissions

	TCL commands with examples
	Commit command
	Rollback command
	Savepoint command
	Example of Savepoint and Rollback

	Basic SQL querying
	SELECT query:
	Syntax of SELECT Query
	Example for SELECT Query
	Example to Select all Records from Table
	Example to Select particular Record based on Condition
	Example to Perform Simple Calculations using Select Query

	Project query:
	using WHERE clause
	Syntax for WHERE clause
	Example using WHERE clause

	Text Fields vs. Numeric Fields
	Example
	Example
	Operators in The WHERE Clause
	What is an Operator in SQL?
	SQL Arithmetic Operators:
	SQL Comparison Operators:
	SQL Logical Operators:
	Numeric Functions: These are functions that accept numeric input and return numeric values.

	2) Character or Text Functions:
	3) Date and time Functions:
	4) Conversion Functions:
	TO_CHAR function
	Syntax

	TO_NUMBER function
	Syntax

	TO_DATE function
	Syntax:

